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Abstract 

This study addresses the significant challenge posed by soil salinization in the fertile Nile Delta region, which threatens 

agricultural productivity and food security. Conventional methods for soil salinity assessment often lack the requisite speed for 

timely decision-making to mitigate salinity in these lands, necessitating the exploration of advanced techniques. Leveraging the 

capabilities of machine learning algorithms, this research develops robust predictive models for soil salinity in the Nile Delta. Three 

state-of-the-art machine learning algorithms: Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), and Random 

Forest (RF), were rigorously evaluated using a comprehensive dataset derived from 120 soil samples collected across the region. 

The models underwent meticulous training and validation processes, incorporating cross-validation techniques and stringent 

performance evaluation metrics, including Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Square 

Error (MSE), Root Mean Squared Error (RMSE), and R2. The results unequivocally demonstrated the superior performance of 

SVM, achieving remarkable values of 0.006 dS/m for MSE, 0.079 dS/m for RMSE, 0.007 dS/m for MAPE, 0.062 dS/m for MAE 

and 1.0 for R2 during the training phase, further corroborated by an 0.008 dS/m for MSE, 0.089 dS/m for RMSE, 0.012 dS/m for 

MAPE, 0.071 dS/m for MAE and 0.99 for R2 during the validation stage. This study elucidates the immense potential of machine 

learning techniques in accurately predicting soil salinity, paving the way for proactive management strategies and sustainable crop 

production practices in the pivotal Nile Delta region, thus enhancing sustainable crop production and agricultural management. 
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1. Introduction 

Soil salinity poses a critical challenge to agricultural 

productivity, with the Nile Delta region experiencing its 

detrimental effects. This vast and agriculturally significant 

area faces a complex interplay of factors contributing to soil 

salinity, affecting crop yields and food security [1].  

Conventional methods often fall short of providing accurate 

and timely assessments, prompting the exploration of 

machine learning (ML) as potential solutions to this pressing 

issue. The Nile Delta, an agricultural heartland, grapples with 

soil salinity due to a combination of human activities and 

environmental factors [2]. Excessive use of irrigation 

practices, compounded by the intricate dynamics of the 

delta's ecosystems, results in elevated salinity levels. This not 

only hinders crop growth but also jeopardizes the delicate 

balance required for sustainable agriculture in the region. The 

socio-economic impact of soil salinity extends beyond the 

farm gate, affecting livelihoods and the overall food supply 

chain. The integration of AI and ML technologies emerges as 

a promising avenue to revolutionize soil salinity prediction 

and management [3]. Algorithms such as Random Forest, 

XGBoost, and Support Vector Machines offer the ability to 

process vast datasets, identifying subtle patterns that 

traditional methods might overlook. By analyzing the 

intricate interactions among soil composition, climate, and 

agricultural practices, AI models hold the potential to 

enhance our understanding of soil salinity dynamics and 

contribute to effective mitigation strategies. Objectives of the 

Study, this study seeks to harness the power of ML models to 

accurately predict soil salinity in the Nile Delta region. The 

overarching goal is to develop robust models that provide 

real-time insights, enabling proactive management of soil 

salinity. The study further aims to compare the performance 

of various ML models, analyze critical input variables, and 

offer recommendations for the adoption of the most effective 

models to address soil salinity challenges in the region. In the 

following sections, we will delve into the specifics of the 

study area, providing a comprehensive description of the Nile 

Delta's geography, climate, soil types, and cropping patterns. 

Subsequently, we will detail the data collection and 
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preprocessing methodologies employed in this research, 

shedding light on the critical steps taken to ensure the 

accuracy and reliability of the data used. The methods section 

will then explore the ML algorithms evaluated, the input 

variables considered for each model, and the intricacies of the 

model training and validation processes. The performance 

evaluation metrics employed will be discussed, providing 

transparency into the criteria used to assess the efficacy of the 

models. The results and discussion section will be dedicated 

to presenting and analyzing the prediction outcomes of 

different models for key soil salinity parameters. A 

comprehensive comparison of model performances based on 

evaluation metrics will be undertaken, accompanied by an in-

depth analysis of important input variables across various 

models. This section will also explore the reasons behind 

differences in model performances, providing valuable 

insights into the nuances of predicting soil salinity using AI 

and ML. 

 

2. Materials and methods 

2.1. Study Area and soil sampling 

The study focuses on the extension of the Nile Delta 

region, a crucial agricultural zone with distinctive 

characteristics. Located in the northeast Nile Delta Egypt, the 

Nile Delta is formed by the Nile River's intricate network of 

distributaries as they meet the Mediterranean Sea. On 20th 

March 2022, 120 soil samples were collected at a depth of 

30cm from the study area (Fig. 1). The region's climate is 

predominantly Mediterranean, characterized by hot, dry 

summers and mild, wet winters. The delta's soil types vary, 

encompassing alluvial soils enriched by the river's sediment 

deposits. Common crops include rice, wheat, and various 

fruits and vegetables. However, the region faces challenges 

associated with soil salinity. The delta's proximity to the 

Mediterranean, coupled with intensive irrigation practices, 

contributes to the accumulation of salts in the soil. This 

salinization poses a significant threat to agricultural 

productivity, affecting crop growth and soil fertility. 

 

2.2. Soil chemical properties analysis 

The concentrations of soluble anions like 

HCO3
−, Cl

−, SO4 2− and cations like  Na+, K+,  Ca2+,  Mg2+   

were assessed from the extract of soil paste also ECe, utilizing 

the established methods outlined by [4]. pH was measured in 

a 1:2.5 soil-water suspension using pH meter. CaCO3 content 

was measured using calcimeter method [5]. 

 

2.3. Description of data collected 

Comprehensive data were collected to develop 

accurate models for predicting soil salinity. Soil samples were 

strategically collected from various locations across the Nile 

Delta, considering different soil types and land-use patterns. 

Analysis of these soil samples included key parameters: 

electric conductivity (ECe), calcium ( Ca2+), magnesium 

( Mg2+), potassium (K+), sodium (Na+), chloride (Cl
−

), 

sulfate (SO4 2−), and bicarbonate (HCO3
−). These parameters 

were chosen to capture the diverse chemical composition 

influencing soil salinity. 

 

2.4. Data preprocessing 

To ensure the reliability of the dataset, several 

preprocessing steps were undertaken. Missing data were 

addressed through imputation methods, such as mean 

substitution, to maintain dataset integrity. Outliers, identified 

through robust statistical techniques, were either corrected or 

removed to prevent their undue influence on model training. 

Normalization and standardization techniques were applied 

to bring all variables to a consistent scale, facilitating the 

effective training of machine learning (ML) models. A 

correlation analysis identified and addressed 

multicollinearity among input variables, ensuring that 

redundant information did not compromise the models' 

performance. Spatial autocorrelation, a common issue in 

geospatial datasets, was mitigated through spatial smoothing 

techniques. This step aimed to reduce the impact of localized 

variations and enhance the generalizability of the models 

across the entire study area. The soil dataset was subsequently 

randomly divided into training and validation sets, with 20% 

of the data allocated for validation, equivalent to 24 soil 

samples. The remaining 80% of the data was designated for 

training, comprising 96 soil samples. This division facilitates 

the creation and evaluation of an effective model. The 

training set served to learn the machine learning models the 

underlying patterns in the data, while the validation set 

provided an independent dataset to assess the models' 

predictive performance. 

 

2.5. Machine learning Algorithms 

The study employed two advanced ML algorithms: 

Random Forest (RF), XGBoost (XGB) and support vector 

machine (SVM). 

 

2.5.1. Random Forest (RF) 

Random Forest is a powerful machine learning 

technique that belongs to the ensemble learning family of 

algorithms [6]. It has proven to be an effective approach for 

predicting soil salinity parameters due to its capability to 

model intricate relationships between input variables and 

target data. The algorithm constructs an ensemble of multiple 

decision trees, leveraging their collective strength to enhance 

the overall accuracy and robustness of the model [7].  In the 

realm of soil salinity prediction, Random Forest can be 

employed to explore the complex interplay between various 

environmental factors, such as meteorological conditions, 

soil properties, subsurface characteristics, and the resulting 

soil salinity levels. The model utilizes these environmental 

variables as input features, while the target variable 

represents the soil salinity value to be predicted. The 

algorithm is trained and validated using a dataset collected 

from a specific region of interest, such as the Manas River 

Basin in China's Xinjiang Uygur Autonomous Region [6]. 

One of the notable advantages of Random Forest is its ability 

to handle both categorical and numerical data seamlessly, 

making it suitable for a wide range of soil salinity prediction 

studies. Additionally, the algorithm is robust to missing data 

and outliers, which are common challenges encountered in 

environmental datasets. By leveraging its ensemble approach, 

Random Forest can effectively capture the intricate patterns 

and relationships present in the data, leading to improved 

predictive performance compared to individual decision trees 

[7]. 

 

2.5.2. Extreme Gradient Boosting (XGB) 

XGBoost (Extreme Gradient Boosting) is an open-

source machine learning library that provides a scalable, 
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distributed gradient boosting framework for various 

programming languages, including C++, Java, Python, R, and 

others [8] . This study utilized the XGBoost from pip library 

in Python to train and validate a prediction model using soil 

data. It is designed to be highly efficient, flexible, and 

portable, implementing machine learning algorithms widely 

used for regression, classification, and ranking problems. 

XGBoost is built on the principles of supervised machine 

learning, decision trees, ensemble learning, and gradient 

boosting [9]. XGBoost is renowned for its ability to achieve 

high accuracy in predictive modelling tasks, often 

outperforming other machine learning algorithms. It is 

particularly effective in handling large datasets with 

numerous features, and it includes regularization techniques 

to prevent overfitting [8]. The model is trained using a 

gradient boosting approach, where each iteration builds a new 

decision tree that focuses on the residual errors of the 

previous tree. Some key features of XGBoost include parallel 

processing, built-in cross-validation, and the ability to handle 

non-linear data patterns. It can also be integrated with 

distributed processing frameworks like Apache Hadoop, 

Apache Spark, and Dask for scalability [10]. 

 

2.5.3. Support Vector Machine (SVM) 

SVM is a powerful type of supervised learning 

algorithm in machine learning, known for its effectiveness in 

solving classification and regression problems. They are 

particularly well-suited for binary classification tasks, where 

the objective is to classify the elements of a dataset into two 

distinct groups. The fundamental aim of an SVM algorithm 

is to find the optimal decision boundary, often referred to as 

a hyperplane, that separates the data points of different 

classes. This hyperplane is especially useful when working in 

high-dimensional feature spaces. The key principle behind 

SVMs is to maximize the margin, which is the distance 

between the hyperplane and the closest data points of each 

category, thereby enhancing the ability to discriminate 

between different classes with high accuracy [11].  These 

Ensemble learning techniques have demonstrated 

effectiveness in managing intricate connections within 

datasets and are particularly suitable for forecasting soil 

salinity. 

 
2.6. Input variables for each model 

For RF, SVM and XGB, the input variables 

comprised the comprehensive set of soil and environmental 

parameters collected during the data collection phase. This 

included ECe, Na+, 𝐾+,  Ca2+,  Mg2+, HCO3
−, Cl

−, SO4 2− 

,along with pH and CaCO3. 

 

2.7. Model training and validation process 

The models underwent a rigorous training process 

using the designated training dataset. Hyperparameter tuning 

was performed to optimize model performance. Following 

training, the models were validated using the independent 

validation dataset to assess their ability to generalize to new, 

unseen data. In the process of training and testing the models, 

a k-fold cross-validation approach (k = 5) was employed to 

prevent overfitting of the models [12]. 

 

2.8. Performance evaluation metrics 
The evaluation of the accuracy and stability of 

machine learning models in predicting soil salinity 

parameters relied on five statistical measures, as proposed by 

[13]. These measures included the coefficient of 

determination (R2), root mean square error (RMSE), mean 

absolute error (MAE), Mean Absolute Percentage Error 

(MAPE), and Mean Square Error (MSE) 

 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
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Where 𝐴𝑖 is the predicated values, 𝐴𝑖̂ is the observed values 

and 𝑛 is the number of soil samples. 

 

3. Results 

3.1. Statistical analysis for the soil dataset 

The statistical descriptions of the dataset are 

presented in Table 1, which includes the count, mean, 

standard deviation, minimum, first quartile, median, third 

quartile, and maximum for soil variables. The dataset 

includes 120 samples, with pH ranging from 6.9 to 8.3, 

electrical conductivity (EC) ranging from 3.39 to 18.15 dS/m, 

sodium Na+ (mmolc/L) ranging from 10.37 to 30.84, 

potassium K+ (mmolc/L)  ranging from 0.5 to 2.01, calcium 

Ca2+ (mmolc/L) ranging from 3 to 55, magnesium Mg2+ 

(mmolc/L) ranging from 8 to 175, bicarbonate HCO3
- 

(mmolc/L) ranging from 3 to 20, chloride Cl- (mmolc/L) 

ranging from 2 to 88, sulfate SO4
2- (mmolc/L) ranging from 

9.22 to 211.81, and  percentage of  CaCO3 ranging from 0.34 

to 6.71. From the statistical analysis, we find that the variation 

between the input values leads to an increase in the accuracy 

of the prediction of the models used. 

 

3.2. Correlation between soil parameters and EC 

The Pearson correlation matrix analysis shows that there 

is a significant correlation between the different features and 

soil salinity (p<0.05) see Fig. 2, revealing that there were low 

and moderate negative correlations between EC and Na+ 

concentration (-0.044), EC and HCO3
- concentration (-0.52), 

and positive correlations between EC and Mg2+ concentration 

(0.97), EC and SO4 concentration (0.95), and EC and CaCO3 

concentration (0.23), EC and Cl- concentration (0.18), EC and 

Ca2+ concentration (0.63), EC and K+ concentration (0.56). 

Additionally, there was a strong positive correlation between 

EC and Mg2+ and SO4
-2 concentration (0.97), (0.95) 

respectively. 
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Figure 1: The study area and the locations of soil samples located in the northeast Nile Delta, Egypt. 

 

 

Figure 2: Analysis of Pearson Correlation Matrix for Soil Features 
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Figure 3: Framework for Machine Learning Models: SVM, RF, XGBoost 

 

Table 1: Statistical descriptions of values of chemical soil properties 

Features count mean std min 25% 50% 75% max 

pH 120 7.61 0.37 6.9 7.3 7.7 7.9 8.3 

EC dS/m 120 9.43 3.79 3.39 6.08 9.1 12.96 18.15 

Na _ mmolc/l 120 17.42 4.38 10.37 13.66 16.73 20.98 30.84 

K _ mmolc/l 120 1.1 0.38 0.5 0.75 1.08 1.37 2.01 

Ca _ mmolc/l 120 17.3 11.03 3 10 14 22.25 55 

Mg _ mmolc/l 120 82.01 41.79 8 44 77.5 114.75 175 

HCO3
- 120 10.83 3.95 3 8 10 14 20 

Cl- 120 19.74 14.35 2 9 16.5 25 88 

SO4
-2 120 87.25 49.31 9.22 42.92 74.74 134.06 211.81 

%CaCO3 120 3.55 1.61 0.34 2.14 3.5 5 6.71 

     

Notes: 25% — Q1; 50% — Q2; 75% — Q3; Std — Standard Deviation 
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Figure 4: Scatter Plots: Observed vs. Predicted Values for Three ML Models. 

 

 

 

 

 

 

 

Table 2: Statistical values of the three machine learning models during training–testing stage of input data 

Model Train time per second Test time per second MSE RMSE MAE MAPE R2 

XGBoost 0.469 0.012 0.547 0.739 0.478 0.049 0.959 

SVM 0.218 0.045 0.006 0.076 0.062 0.007 1 

Random Forest (RF) 0.272 0.033 0.532 0.73 0.507 0.055 0.96 

 

 

 

 

Table 3: Statistical values of the three machine learning models during validation stage of input 

Model MSE RMSE MAE MAPE R2 

SVM 0.008 0.089 0.071 0.012 0.99 

Random Forest (RF) 0.814 0.902 0.725 0.114 0.94 

XGBoost 0.847 0.92 0.698 0.098 0.938 
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These findings suggest that there may be complex 

relationships between these variables that could impact the 

accuracy of soil salinity predictions. 

 

3.3. Assessing the predictive accuracy of machine learning 

algorithms 

Three machine learning models Extreme Gradient 

Boosting (XGB), Support Vector Machine (SVM), and 

Random Forest (RF) were trained, tested, and evaluated 

utilizing the soil analysis dataset to create an accurate soil 

salinity prediction model Fig. 3. Table 2 shows statistical 

values which expresses of the three machine learning models 

performance during training–testing stage of dataset, there 

are significant differences in the results of the forecast and the 

accuracy of the models, and this is due to the type of model 

used and the input and output data. The performance of each 

model was assessed based on Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE), Mean Squared Error 

(MSE), Mean Absolute Percentage Error (MAPE), and R-

squared value. SVM performed exceptionally well, yielding 

the lowest Mean Squared Error (MSE)= 0.006 dS/m, Root 

Mean Square Error (RMSE)= 0.076 dS/m, Mean Absolute 

Error (MAE)= 0.062 dS/m, Mean Absolute Percentage Error 

(MAPE)= 0.007 dS/m, and the highest Coefficient of 

Determination R2 =1 compared to XGBoost and Random 

Forest. xGBoost had the longest training time per second 

(0.469 seconds), followed by RF (0.272 seconds) and SVM 

(0.218 seconds). However, SVM had the shortest test time per 

second (0.006 seconds), compared to xGBoost (0.547 

seconds) and RF (0.532 seconds). Specifically, SVM 

achieved an MSE of 0.547 dS/m, RMSE of 0.739 dS/m, MAE 

of 0.478 dS/m, and R2score of 0.959, indicating superior 

accuracy compared to RF and XGBoots.so SVM performed 

better than RF and XGBoost, respectively. Table 3 describes 

statistical values which expresses of the three machine 

learning models performance during validation stage of 

predicted dataset. During the validation phase, the 

performance of each algorithm varied slightly. Notably, SVM 

outperformed both RF and xGBoost in terms of MSE (0.008 

dS/m vs. 0.814 dS/m and 0.847 dS/m, respectively), RMSE 

(0.089 dS/m vs. 0.902 dS/m and 0.921 dS/m, respectively), 

and MAE (0.071 dS/m vs. 0. 725 dS/m and 0.698 dS/m, 

respectively). Moreover, SVM also achieved a higher R2 

value (0.999) than either RF or XGBoost (0.941 and 0. 938, 

respectively). Taken together, these results indicate that SVM 

performed best overall in predicting soil salinity based on the 

input data. 

 

3.3. Model fitting and validation 

Fig. 4 illustrates scatter plots depicting the fitting results 

depending on observed and predicted values during the 

validation stage for SVM, RF, and XGBoost. These scatter 

plots were generated to visually represent the relationships 

between the observed and predicted values. It is evident from 

the scatter plots that SVM yielded the best model-fitting 

results (R2 = 0.99, MSE=0.008, RMSE= 0.089, MAE=0.071, 

MAPE=0.012), with most points aligning closely along the 

diagonal line. However, one point exhibited a slight 

deviation, where the observed value was 5.25 dS/m while the 

predicted value was 4.51 dS/m. RF also demonstrated a good 

model-fitting results (R2 = 0.94, MSE=0.814, RMSE= 0.902, 

MAE=0.725, MAPE=0.114), although some points deviated 

slightly from the diagonal line. Notably, the model's accuracy 

in predicting observed values below 8.55 dS/m was lower 

compared to those above this threshold. On the other hand, 

XGBoost displayed a lesser degree of alignment, with several 

points noticeably deviating from the diagonal line. Moreover, 

the model's accuracy in predicting observed values below 

9.07 dS/m was inferior to those above this threshold. 

Consequently, SVM and RF appear to be more effective in 

predicting soil salinity levels compared to XGBoost. These 

findings offer visual support for the efficacy of the proposed 

predictive models, particularly the one based on the SVM 

method, given its consistently high R2 values throughout the 

validation process. 

 

4. Discussion 

Soil salinization has emerged as a major global 

environmental issue, threatening agricultural productivity 

and food security [14,15]. Therefore, accurate prediction of 

soil salinity is critical for effective management strategies 

aimed at mitigating its impacts. This study demonstrated the 

potential utility of machine learning techniques for 

developing robust predictive models of soil salinity based on 

a range of physiochemical parameters. Our findings showed 

that all three algorithms evaluated in this study, namely 

xGBoost, SVM, and RF, yielded promising results, although 

SVM performed best overall. 

 

4.1. Exploration of soil dataset characteristics 

The statistical analysis of the soil dataset sheds light 

on the diverse range of soil parameters crucial for predicting 

soil salinity levels [16]. The statistical analysis (Table 1) 

confirmed the variability within the soil properties, with pH 

ranging from 6.9 to 8.3, and electrical conductivity (EC) 

ranging from 3.39 to 18.15 dS/m. This variation aligns with 

previous studies conducted in [17], where a wide range of soil 

salinity levels were reported in agricultural regions. The 

presence of this variability is crucial for the development of 

robust prediction models, as it allows the models to learn 

from a diverse range of data points [18] Correlation analyses 

reveal intricate relationships between soil parameters and EC, 

a key indicator of soil salinity [19]. The Pearson correlation 

analysis (Fig. 2) identified significant correlations (p<0.05) 

between EC and several soil properties, including Mg²⁺ 

(0.97), SO₄²⁻ (0.95), CaCO₃ (0.23), Cl⁻ (0.18), and Ca²⁺ 

(0.63). These findings are consistent with established 

knowledge, as these elements are known to contribute to soil 

salinity [20]. The strong positive correlations between EC and 

Mg²⁺ and SO₄²⁻ particularly highlight their influence on 

overall soil salinity levels. Understanding these relationships 

is essential for developing targeted strategies to manage soil 

salinity in agricultural fields.  

 

4.2. Comparative assessment of machine learning 

algorithms 
The comparative evaluation of machine learning 

algorithms, including Extreme Gradient Boosting 

(XGBoost), Support Vector Machine (SVM), and Random 

Forest (RF), provides valuable insights into their performance 

in predicting soil salinity levels [21] .While SVM exhibits 

superior performance in terms of predictive accuracy metrics 

such as Mean Squared Error (MSE), Root Mean Square Error 

(RMSE), and R-squared value, it is essential to consider the 

strengths and limitations of each algorithm .  Previous studies 

have also reported SVM's effectiveness in various predictive 
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tasks, attributed to its ability to handle nonlinear relationships 

and high-dimensional data [22]. However, RF and XGBoost 

may offer advantages in certain scenarios, such as 

interpretability and scalability. These findings contribute to 

the ongoing discourse on the selection and optimization of 

machine learning algorithms for soil salinity prediction [23]. 

 

4.3. Assessing the predictive accuracy of machine learning 

models 

The evaluation of the three machine learning models 

(XGBoost, SVM, and Random Forest) revealed that SVM 

outperformed the other models in terms of prediction 

accuracy (Table 2, 3). SVM achieved the lowest MSE (0.006 

dS/m), RMSE (0.076 dS/m), and MAE (0.062 dS/m), and the 

highest R² (1.0) during training and the highest R² (0.99) 

during validation stages. These results suggest that SVM 

effectively captured the underlying patterns within the soil 

dataset and produced highly accurate predictions of soil 

salinity. The superiority of SVM compared to XGBoost and 

Random Forest might be attributed to its ability to handle 

complex non-linear relationships between the input soil 

properties and the target variable (EC) [24] .   

 

4.4. Insights from model fitting and validation  

The model fitting and validation stage provide 

further insights into the performance of machine learning 

algorithms in predicting soil salinity levels [21]. While SVM 

demonstrates superior model fitting results, RF also exhibits 

satisfactory alignment between observed and predicted 

values. XG Boost, although displaying less alignment, may 

offer computational advantages in certain contexts .  

Comparative analyses of model performance highlight the 

importance of considering multiple metrics and trade-offs 

when selecting a predictive model [25]. Additionally, 

rigorous validation procedures ensure the reliability and 

generalizability of predictive models across diverse datasets 

and environmental conditions. These insights contribute to 

advancing the understanding of machine learning 

applications in soil salinity prediction, thereby enhancing 

agricultural management, and promoting sustainable crop 

production in the Nile Delta .  The scatter plots (Fig. 3) 

provided a visual representation of the model-fitting 

performance. SVM exhibited the best alignment between the 

observed and predicted EC values (R² = 0.99), indicating a 

strong agreement between the model's predictions and the 

actual soil salinity measurements. Conversely, XGBoost 

displayed a weaker alignment, with several data points 

deviating from the diagonal line, suggesting a less accurate 

prediction of soil salinity, particularly for values below 9.07 

dS/m. These findings highlight the importance of model 

selection for achieving reliable soil salinity predictions. 

Overall, the results demonstrate the potential of machine 

learning, particularly SVM, for providing accurate and 

efficient soil salinity assessments.  

 

4.5. Agreement and divergence in research findings 
Our findings align with previous research indicating 

SVM's superiority in soil salinity prediction tasks [26]. 

However, although xGBoost initially showed promising 

outcomes during the initial stages of development, ultimately, 

SVM emerged as the most accurate approach for predicting 

soil salinity levels. This could potentially be attributed to 

SVM's ability to handle complex datasets efficiently while 

avoiding overfitting issues commonly encountered when 

dealing with large feature spaces [27]. By capitalizing on 

SVM remarkable capabilities and exploring complementary 

approaches, researchers can unlock novel ways to confront 

pressing environmental challenges linked to soil degradation 

and contamination  . Overall, this study highlights the 

potential of machine learning algorithms in predicting soil 

salinity and offers a promising avenue for future research. By 

improving the accuracy and reliability of soil salinity 

predictions, farmers and decision makers can make informed 

decisions regarding sustainable crop production, soil fertility, 

and enhanced agricultural management. The comprehensive 

analysis of machine learning algorithms provides valuable 

insights into their efficacy and suitability for soil salinity 

prediction tasks. While SVM emerges as a top performer, the 

choice of algorithm should consider various factors, 

including dataset characteristics, computational resources, 

and modeling objectives. 

 

5. Conclusions 

This study demonstrated the power of machine 

learning techniques, particularly the Support Vector Machine 

(SVM) algorithm, in accurately predicting soil salinity levels 

in the agriculturally important Nile Delta region.  SVM's 

outstanding performance, with a low MSE of 0.006 dS/m and 

RMSE of 0.076 dS/m during training, and an 𝑅2 value of 1.0 

during training and 0.99 during validation, affirms its ability 

to capture the complex relationships between soil parameters 

and salinity. The results recommend adopting SVM for 

predicting soil salinity in the region. The study's findings 

suggest that SVM is the most suitable model for predicting 

soil salinity in the Nile Delta region, offering accurate and 

reliable predictions crucial for informed decision-making in 

agricultural management. This study highlights SVM as the 

standout algorithm, while acknowledging the potential of 

alternative ML techniques like Random Forest and Extreme 

Gradient Boosting, both of which showed promise. Further 

exploration and optimization of these methods, tailored for 

specific scenarios or integrated with additional data sources, 

are warranted. Additionally, incorporating environmental and 

climatic factors could enhance predictive accuracy. The study 

sets the stage for future research in precision agriculture and 

sustainable crop production, leveraging ML, remote sensing, 

and real-time soil salinity monitoring. Future directions 

include combining algorithms, employing geospatial data and 

IoT monitoring, edge computing, developing decision 

support systems, exploring model transferability, and 

integrating economic and socio-cultural factors for 

sustainability. 
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