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Abstract 

 

 

Stainless steels play a crucial role in diverse industrial domains. However, due to their exposure to acidic environments, 

stainless steels undergo the corrosion phenomenon, leading to the deterioration of the material and its properties. Thus, the objective 

of this work is to study the corrosion inhibition of stainless steel in an H
2
SO

4
 2M medium by using two organic compounds, namely 

Py-3:{1-amino-5,10-dioxo-3-(p-tolyl)-5,10-dihydro-1H-pyrazolo[1,2-b] phthalazine-2-carbonitrile} and Py-4:{1-amino-3-(2-

chlorophenyl)-5,10-dioxo-5,10-dihydro-1H-pyrazolo[1,2-b]phthalazine-2carbonitrile}. This study was conducted using transient 

electrochemical methods in conjunction with a theoretical approach. The obtained results demonstrate that the addition of pyrazole 

compounds in the corrosive medium H
2
SO

4
 exhibits excellent inhibitory power against steel corrosion, with an inhibitory efficiency 

reaching 98%. The tested inhibitors are adsorbed into the surface of the metal by chemical bonds, Moreover, the adsorption of these 

compounds follows the Langmuir adsorption model. Theoretical calculations based on the Density Functional Theory (DFT) provide 

a better understanding of the reactivity of tested inhibitor towards stainless steel which they are in good agreement with the 

experimental findings. 
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1. Introduction 

Corrosion of materials is a pressing problem that 

requires significant attention and rapid understanding within 

the scientific community. Despite modern technological 

developments, it remains the main issue in many works, 

because it remains a problem that is often difficult to 

eliminate. The consequences of corrosion can cause 

irreversible damage to the environment and even to human 

life. One of the serious consequences of corrosion involves 

economic losses, with industrialized countries recording a 

loss of around 3 to 4% of their gross national product (GNP) 

[1]. However, of the total cost, 20 to 25% of losses can be 

saved by a better understanding of the causes of corrosion and 

better application of protection techniques. Due to their 

excellent mechanical properties, stainless steels play an 

important role in a wide range of sectors, including the 

chemical, petrochemical, and pharmaceutical industries [2]. 

However, due to their interactions with the environment, 

stainless steels undergo the phenomenon of corrosion, 

resulting in material deterioration and the loss of their 

properties. Several methods of corrosion protection have 

been considered so far [3-6]. These techniques can be 
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classified into two main categories: those that act on the metal 

such as metallic or organic coatings, the use of a more noble 

material, cathodic and anodic protection [7,8], on the other 

hand those that modify the aggressiveness of the environment 

as the use of organic inhibitors. Utilizing corrosion inhibitors 

is regarded as the most effective strategy for protecting 

materials against corrosion, due to their low cost, ease of 

application, and high effectiveness [9,10]. Organic molecules 

containing heteroatoms such as N, S, O, or P, π-conjugated 

systems, or compounds with aromatic rings are frequently 

used to control metal corrosion in acidic environments. The 

ability of organic compounds to inhibit corrosion derives 

from their adsorption to the metal surface by two main types 

of interaction, namely physical adsorption, and 

chemisorption [11-13]. In this context, several tests have been 

conducted on various organic compounds such as triazole 

derivatives [14], pyrrole [15], benzothiazine [16], and 

hydrazine [17], which have shown significant inhibitory 

effectiveness against corrosion in acidic environments. 

Recently, pyrazole and its derivatives have been regarded as 

an important class of anticorrosive compounds, especially in 

acidic solutions [18-20], due to their strong adsorption 

capacity. This group of organic compounds is frequently 

linked to various biological activities, such as antimicrobial, 

antifungal, antitubercular, anti-inflammatory, anticonvulsant, 

anticancer, and antiviral properties [21]. The objective of this 

study is to assess the inhibitory effects of two pyrazole 

compounds namely Py-3:{1-amino-5,10-dioxo-3-(p-tolyl)-

5,10-dihydro-1H pyrazolo[1,2-b]phthalazine-2-carbonitrile} 

and Py-4:{1-amino-3-(2-chlorophenyl)-5,10-dioxo-5,10-

dihydro-1H-pyrazolo[1,2-b]phthalazine-2carbonitrile} in a 

2M H2SO4 solution using transient electrochemical 

techniques based on electrochemical impedance 

spectroscopy. Additionally, a theoretical investigation of the 

molecules understudy was carried out using density 

functional theory (DFT) methods to enhance our 

understanding of how the inhibitory molecules interact with 

the surface of the steel. The theoretical calculation of both 

global and local quantum reactivity descriptors (EHOMO, 

ELUMO, μ, χ, η, ΔN, and the Fukui index) offers valuable 

insights into the adsorption mechanism of the inhibitors under 

investigation and identify sites that are particularly reactive 

to nucleophilic and/or electrophilic attacks. 

 

2. Materials and Methods 

 

2.1. Materials and corrosive medium 

 

The corrosive medium is 2M sulfuric acid (H2SO4) 

solution, prepared by diluting concentrated commercial acid 

at 98% with distilled water. The material under examination 

is stainless steel, with its elemental composition by mass 

fraction detailed in Table 1. The steel specimen takes the 

shape of a plate, providing a contact surface area with an 

electrolyte of approximately 1cm2. Before each test, the 

stainless-steel samples are prepared by polishing with 

abrasive paper of increasing grit size (from 200 to 2000 

grade). Following this, they are rinsed with distilled water and 

finally dried. The chemical structure of the two compounds 

under examination (Py-3 and Py-4) is depicted in Figure 1. 

These compounds were dissolved in 2 ml of dimethyl 

sulfoxide (DMSO), with the concentration of the inhibitors 

varying from 10-6 to 10−3 M. 

2.2. Electrochemical study 

  

Electrochemical experiments were conducted 

employing a standard three-electrode setup in a Pyrex glass 

cell. The reference electrode utilized was a silver chloride 

electrode (Ag/AgCl), while a platinum plate served as the 

counter electrode. For the working electrode, stainless steel 

with a surface area of 1cm2 was employed. Polarization and 

impedance tests were conducted using a PGZ100 

Potentiostat/Galvanostat/Voltalab under the control of a 

computer equipped with Volta Master 4 software. Before 

each measurement, the working electrode was immersed in 

the test solution for 30 minutes at the open-circuit potential to 

stabilize the system at a corrosion potential [22]. 

Electrochemical impedance measurements were conducted 

across a frequency range spanning from 100 kHz to 10 mHz, 

applying a sinusoidal perturbation potential with an 

amplitude of 10 mV. The corrosion inhibition efficiency 

(ηimp%) is deduced from the charge transfer resistance (Rct) 

values, utilizing the following equation [23]: 

 

𝜂𝑖𝑚𝑝% = (𝑅𝑡𝑐 − 𝑅𝑡𝑐
° 𝑅𝑡𝑐) × 100⁄  

𝜃 = 𝑅𝑡𝑐 − 𝑅𝑡𝑐
° 𝑅𝑡𝑐⁄  

 

With 𝑅𝑡𝑐
°  and Rtc are the charge transfer resistance in the 

absence and presence of an inhibitor, respectively, and θ is 

the recovery rate. 

 

2.3. Computational methodology 

 

To support the preceding findings, a Density 

Functional Theory (DFT) investigation was conducted on 

both the neutral and protonated forms of Py1 and Py2 in a 

solution phase. The study utilized the commonly employed 

B3LYP functional and the 6–311G (d,p) basis set, employing 

the Gaussian 09W program package and GaussView 5.0 

program . In this study, all computations were carried out 

using the IEFPCM method to simulate a water solution 

environment. The energies of EHOMO and ELUMO orbitals, the 

energy gap (ΔEL-H), along with other quantum chemical 

descriptors, were predicted to explore the relationship 

between the experimentally obtained inhibition efficiencies 

and the molecular structures of the investigated compounds. 

 

3. Results and discussion 

 

3.1. Electrochemical impedance spectroscopy 

 

Electrochemical Impedance Spectroscopy (EIS) 

stands out as a reliable method for investigating the surface 

properties of steel samples and the dynamics of charge 

transfer occurring at the interface between the electrolyte and 

the electrode. The impedance diagrams obtained provide 

access to the values of physical parameters characterizing the 

system (Rs, Rtc, Cdc, n...), and thus, to the inhibitory 

efficiency rate under the experimental conditions used. The 

analysis of electrochemical parameters derived from 

impedance diagrams provides insights into the corrosion 

process mechanism and also serves as quantitative means to 

compare the performance of different components of the 

system. The impedance diagrams of stainless steel immersed 

in the corrosive solution of 2M H2SO4, with and without the 
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addition of inhibitors Py-3 and Py-4 at various 

concentrations, are presented as Nyquist plots in Figure 2 and 

as Bode plots in Figure 4. The diagrams obtained in the 2M 

H2SO4 medium without inhibitor consist of two capacitive 

loops: the first one at high frequency is attributed to the 

relaxation process within the natural oxide present on the 

surface of the sample and its dielectric properties, while the 

second one at low frequency is attributed to the charge 

transfer process [24, 25]. The Nyquist diagrams obtained 

exhibit a similar appearance after adding the pyrazole 

compounds to the aggressive solution. They are characterized 

by two capacitive loops: one at high frequency attributed to 

the adsorption of a film formed by inhibitor molecules, and 

the other at low frequency attributed to the charge transfer 

resistance. Additionally, we observe that the size of the loop 

gradually increases with the addition of different 

concentrations of tested inhibitors [26]. This result reflects 

the effect of the inhibitor on the dissolution process of 

stainless steel in a 2M H2SO4 environment. Additionally, we 

can observe that the impedance plots obtained do not form 

perfect semicircles. This deviation is attributed to the 

frequency dispersion of interfacial impedance [27-29], this 

phenomenon typically stemming from the heterogeneity of 

the electrode surface. This heterogeneity could be caused by 

various factors including surface roughness, impurities, 

dislocations, inhibitor adsorption, and the formation of 

porous layers [30, 31]. The electrochemical impedance 

spectroscopy (EIS) data were analyzed using the EC-lab 

software to simulate equivalent electrical circuits, as 

illustrated in Figure 3. The suggested equivalent circuit 

includes the following components: Rs represents the 

solution resistance, Rtc the charge transfer resistance, Rf the 

film resistance, and Qf and Qtc the elements with constant 

phase [32]. All impedance spectra obtained from the exposed 

steel electrode for 30 minutes in 2M H2SO4 solutions 

containing the studied inhibitors were analyzed using the 

equivalent circuit shown in Figure 3. As can be seen in Figure 

3, the capacitor has been replaced by a constant phase element 

with a fractional exponent n, indicating the presence of a 

dissimilar frequency response. The CPE impedance is 

defined as follows [33]: 

 

𝑍𝐶𝑃𝐸(𝜔) =  𝑄−1(𝑗𝜔)−𝑛 

 

With Q expressed in units of Ω.cm-2.sn, ω denoting the 

angular frequency in rad s−1(ω =2π fmax), fmax representing the 

frequency at the peak of the semicircle, n is the empirical 

exponent of the CPE, measuring the deviation from ideal 

capacitive behavior. This parameter can be used as an 

indicator of surface heterogeneity or roughness, with -1 < n < 

1. ZCPE can represent an inductance (n = -1), a Warburg 

impedance (n = 0.5), a pure capacitance (n = 1), or a 

resistance (n = 0). Thus, it is observed that the smaller the 

value of n, the higher the surface roughness [34,35]. The 

electrochemical parameters obtained from the impedance 

diagrams are grouped in Table 2. These parameters include 

the film resistance (Rf), charge transfer resistance (Rtc), 

polarization resistance (Rp), constant phase elements (Qi), and 

inhibitory efficiency imp%. The values of the polarization 

resistance (Rp) for all systems are calculated using the 

following equation:  

 

Rp= Rf + Rtc 

 

The corrosion inhibitory efficiency of the steel is calculated 

from the charge transfer resistance using the following 

relation: 

 


𝑖𝑚𝑝

% =
𝑅𝑡𝑐 − 𝑅𝑡𝑐

0

𝑅𝑡𝑐

× 100 

 

Where 𝑅𝑡𝑐
0  and  𝑅𝑡𝑐 are respectively the values of the charge 

transfer resistances of the steel in the absence and presence of 

the inhibitor. The analysis of the results regrouped in Table 2 

reveals that the values of Qf decrease and the polarization 

resistance increases with the concentrations of the studied 

inhibitors. The decrease in Qf may result from a local 

decrease in the dielectric constant and/or an increase in the 

thickness of the double layer. This has been attributed to the 

gradual replacement of water molecules and other ions 

initially adsorbed on the surface by the adsorption of inhibitor 

molecules on the metal surface [36-38]. However, the 

increase in the coefficient (nf and ntc) with inhibitor 

concentration reflects the decrease in surface heterogeneity of 

the stainless steel, which results from the adsorption of 

inhibitor molecules onto the steel surface. Furthermore, the 

values of these parameters are close to unity (𝑛−̃1) for all 

inhibited systems, implying that the double layer between the 

charged metal surface and the solution is considered an 

electrical capacitor whose capacity decreases due to the 

adsorption of inhibitor molecules onto the steel surface, thus 

forming a protective layer that reduces the number of active 

corrosion sites [39]. According to the Helmholtz model, the 

capacitance of the double layer Cdc is calculated by the 

following equation [40, 41]: 

 

𝐶𝑑𝑐 =
ƐƐ0𝑆

𝑒
 

 

Where e is the thickness of the deposit; Ɛ is the dielectric 

constant; Ɛ 0 is the permittivity of the medium (8.854×10-14 F 

cm-1), and S is the surface area of the electrode. The inhibitory 

efficiency (ηimp%) rises as inhibitor concentrations increase, 

leading to higher Rp values, which indicate improved 

inhibition efficiency due to enhanced adsorption of inhibitor 

molecules on the steel surface. These findings have been fully 

explained by numerous authors [42, 43]. The Bode spectrum 

obtained for steel in the absence and presence of inhibitors 

Figure 4 shows two maximum phases at low and high 

frequencies, indicating the detection of two-time constants. 

These results confirm the equivalent electrical circuit model 

used to simulate the experimental data. The values of the 

impedance modulus log (|Z|) in the low-frequency region are 

used to prove the performance of the tested compounds as 

corrosion inhibitors. As can be seen in Figure 4, the 

increasing values of log (|Z|) indicate that corrosion resistance 

is very high, and that the inhibitors tested are good inhibitors 

with high inhibitory efficiency [44]. Consequently, the results 

obtained in Figure 4 show that log (|Z|) values at low 

frequencies are greater for the Py-3 inhibitor. This confirms 

the better performance of this compound. The phase angle 

values obtained for steel in the presence of inhibitors are 

higher than those obtained in the absence of inhibitors. As 

inhibitor concentration increases, phase angle values increase 

up to 70°. This suggests that inhibited samples have a lower 
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surface roughness, reflecting a higher inhibition behavior 

attributed to inhibitor adsorption on the stainless-steel surface 

[45,46].  

 

3.2. Adsorption isotherms   

 

The corrosion inhibition of metals by organic 

compounds is explained by their adsorption on the metal 

surface. This is described by two main types of adsorptions: 

physical adsorption and chemical adsorption. It depends on 

the charge of the metal, its nature, the chemical structure of 

the organic product, and the type of electrolyte. Indeed, in an 

aqueous solution, the adsorption at the metal-solution 

interface of organic molecules coming from the solution is 

generally accompanied by the desorption of water molecules 

already adsorbed on the metal surface. This adsorption is 

therefore considered as a substitutional adsorption 

phenomenon, as shown by the following reaction [47]: 

 

Orgaq + xH2Oads ↔ Orgads + xH2Oaq 

 

Orgaq and Orgads are respectively the organic molecules in 

solution and adsorbed on the stainless-steel surface, x denotes 

the number of water molecules replaced by the inhibitor 

molecule. There are several types of adsorption isotherms 

used to evaluate the adsorption phenomenon on the metal 

surface. Among the most commonly used isotherms are: 

Langmuir, Temkin, Frumkin, and Freundlich. According to 

these adsorption isotherms, the coverage rate is related to the 

inhibitor concentration according to the equations illustrated 

in the following table 3. The Figure 5 below represents the 

Langmuir isotherm. According to our study, the Langmuir 

adsorption isotherm shows an excellent fit with the 

experimental values, implying that it appears to be the most 

suitable to describe the adsorption of Py-3 and Py-4 inhibitors 

on the stainless-steel surface. This model assumes that the 

steel surface has a fixed number of adsorption sites, and that 

each site can accommodate only one adsorbed species. 

Furthermore, there is no interaction between adsorbed 

molecules, and all adsorption sites are thermodynamically 

equivalent. Thus, the adsorption energy does not depend on 

the surface coverage rate θ, which means that the adsorption 

energy is constant for all sites [55,56]. The adsorption 

constant Kads is related to the standard free energy of 

adsorption ΔGads by the following equation [57]: 

 

𝐾𝑎𝑑𝑠 =
1

55.5
𝑒−

ΔGads
𝑅𝑇  

 

Where 55.5 is the molar concentration of water (mol/l), R is 

the universal gas constant and T is the absolute temperature. 

The calculated thermodynamic parameters are shown in 

Table 4. According to the data in the table, we observed a 

high correlation coefficient (R2) for the two products, and the 

slope is very close to unity. These results indicate that the 

experimental data are well described. The high Kads values for 

the two compounds tested indicate their strong adsorption to 

the steel surface (Table 4). This can be simply explained by 

the presence of several donor atoms, such as oxygen, nitrogen 

and chlorine, in the functional groups of the molecules. The 

negative values of ΔGads are compatible with the spontaneity 

of the adsorption process and the stability of the adsorbed 

layer on the steel surface. In general, absolute values of ∆Gads 

close to -20 kj.mol-1 are associated with electrostatic 

interactions between the charged molecules and the charged 

metal (physical adsorption), while those approaching -40 

kj.mol-1 suggest electron sharing or transfer between the 

active sites of the inhibitor and the vacant "d" orbitals of the 

metal, with a coordination bond being formed (covalent 

bond), thus indicating chemisorption [58-60]. The standard 

free energy of adsorption ∆Gads calculated for the Py-3 and 

Py-4 inhibitors are close to -40 Kj.mol-1. This indicates that 

the adsorption of our inhibitors on the steel surface is of the 

chemical type. 

 

3.3. Quantum calculations  

 

Theoretical chemistry has been increasingly 

successful due to its ability to provide results and 

explanations that are not accessible through experimental 

approaches alone. Currently, DFT is very popular because it 

can handle large systems, including electronic correlation 

effects [61]. In this study, theoretical calculations of various 

parameters were conducted based on Density Functional 

Theory (DFT) at the B3LYP/6–311G (d,p) basis set 

implemented in the Gaussian 09 software [62]. The DFT 

method is used in an aqueous environment to correlate the 

results of experimental studies and to establish a relation 

between inhibition efficiencies and the structure of inhibitor 

molecules. The optimized structures of the studied pyrazole 

molecules in their neutral state (Py-3 and Py-4) in an aqueous 

environment are presented in Figure 6. The presence of 

heteroatoms in the studied molecules promotes their strong 

tendency to protonate in acidic solution [63]. Therefore, the 

percentage of observed species as a function of the pH 

diagrams of the Py-3 and Py-4 molecules using the 

MarvinSketch software is presented in Figure 6 [64].  Figure 

6 clearly shows that the mono-protonated forms both studied 

species in N14 are the most favored and stable at a pH close 

to 0. The optimized structures of the protonated pyrazole 

molecules are illustrated in Figure 6. The properties of neutral 

and protonated molecules such as the highest occupied 

molecular orbital (HOMO), lowest unoccupied molecular 

orbital (LUMO), energy gap, dipole moment, and other 

quantum parameters are calculated and correlated with the 

inhibitory efficiencies of the molecules. From Figure 7, the 

HOMO electron density distribution shows that the electron-

donating adsorption centers for both systems are localized on 

the pyrazolo-pyridazine and heteroatom moiety regions. 

However, the electron density of LUMO also extends over 

the same regions as HOMO, but in this case the C13-linked 

phenyl ring is also involved. In the case of protonated species, 

the HOMO densities of the molecules studied appeared less 

dense than those of neutral forms, with significant 

localization on the phenyl ring. The molecular electrostatic 

potential (MEP) is a descriptor directly linked to electron 

density used to predict active sites and their reactivity to 

electrophilic and nucleophilic attacks [65]. The regions of 

molecular electrostatic potential (MEP) of the inhibitors 

studied were calculated and presented in Figure 7. Different 

values of electrostatic potential are represented by different 

colors. The potential increases in the order red, orange, 

yellow, green, blue. The negative regions of the MEP (red and 

yellow) are linked to electrophilic reactivity, while the 

positive electron density found in the blue regions is generally 

associated with nucleophilic reactivity. In our case, the MEP 
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of both pyrazole molecules shows that the most negative 

region is distributed mainly near the oxygen atoms.  Figure 7 

clearly shows that the electrophilic regions (represented by 

the color blue) cover the entire molecular surface of the 

compounds studied, indicating that these regions are electron-

deficient and also confirming their very low tendency to 

donate electrons. In order to correlate the anti-corrosion 

activity obtained experimentally with the structural and 

electronic properties of the two neutral and protonated 

inhibitor molecules and to interpret their adsorption mode on 

the metal surface, we calculated a number of electronic 

descriptors such as the highest occupied molecular orbital 

energy (EHOMO), the lowest unoccupied molecular orbital 

energy (ELUMO), the energy gap (EHOMO – ELUMO), the 

electronegativity (χ), the global hardness (η), the global 

softness (σ), and the dipole moment (μ). The results are 

presented in Table 5. Quantum molecular descriptors are 

calculated using the following equations [66,67]: 

 

-gap LUMO HOMOE E E =  

( )
2 2

gap LUMO HOMO
E E E


 −

= =  

1 2
=

LUMO HOMOE E



=

−
 

 

The fraction of electrons transferred (∆N110) is determined 

using the following formula: 

 

( )
110

inh

Fe inh

- 

η

χ
ΔN=

2 + η


 

 

Where the work function value Φ used in this study is 4.82 

eV on the (110) lattice plane of Fe. [68]. The higher HOMO 

energy value (EHOMO) is linked to greater corrosion inhibition 

efficiency due to the higher electron donation potential of the 

inhibitor centers of the molecule under study towards the 

unoccupied d orbital of the steel surface [69,70]. 

Generally, the smallest value of ELUMO is attributed to the 

high electron-accepting potential of the inhibitor molecule, 

which is responsible for its high inhibition performance, 

meaning that this molecule can easily accept electrons from 

the unoccupied d orbital of the metal surface [71]. The largest 

energy band gap (EHOMO - ELUMO) indicates lower reactivity 

and interaction between the two molecular frontier orbitals, 

HOMO and LUMO [72]. Therefore, the Py-3 molecule has 

higher stability and reactivity than the Py-4 molecule, 

indicating that Py-3 has a stronger donating effect than the 

Py-4 molecule: 

 

∆E (Py-3)  <∆E (Py-4) 

 

Many studies have reported that molecules with high polarity 

exhibit higher reactivity than those with low polarity. In this 

study, the correlation between the dipole moment and the 

inhibition efficiency of the two studied molecules shows that 

inhibition decreases with polarity. The positive values 

obtained for ΔN for the neutral state molecules indicate that 

these inhibitor forms tend to transfer their electrons to the 

vacant d orbitals of Fe atoms during interactions between the 

inhibitors and the metals. However, for the protonated forms, 

the negative sign of ΔN for the molecules indicates the 

transfer of electrons from the vacant d orbitals of Fe atoms to 

the protonated inhibitors during interactions with the metallic 

inhibitors. Furthermore, it is noted that for the protonated 

forms (Table 5), the compound Py-3 exhibits the smallest 

hardness value and a higher softness value for both 

protonated and neutral forms studied, confirming the most 

significant inhibitory power of this molecule compared to Py-

4 compounds. All quantum chemistry descriptors indicate 

that the neutral form of the two studied inhibitors has better 

adsorption properties and could be the stable form of these 

molecules in the aqueous phase. 

 

3.4. Fukui Functions 

 

The reactive sites that likely contribute to the 

adsorption of pyrazole molecules on the metal were studied 

using Fukui functions. The Fukui function is one of the local 

density-dependent selectivity descriptors widely used to 

model the chemical reactivity of different sites on a molecule 

[73]. These descriptors (fk+ and fk-) indicate the reactive 

centers of the molecules (nucleophilic and electrophilic 

centers). Generally, fk
+ measures the changes in density when 

molecules gain electrons and corresponds to reactivity 

towards nucleophilic attack. On the other hand, fk
- 

corresponds to reactivity towards electrophilic attack when 

the molecule loses electrons. Nucleophilic and electrophilic 

attacks are controlled by the maximum values of fk+ and fk-. 

The Fukui functions, which represent the indices of attacks of 

nucleophilic and electrophilic centers, using Mulliken 

population analysis (NPA), are calculated as follows [74,13]: 

 

Attacks of nucleophilic centers: ( 1) - ( )
kk kf P N P N+ = +  

Attacks of electrophilic centers: ( ) ( )- - -1k k kP N P Nf =  

 

Where Pk (N), Pk (N + 1), and Pk (N-1), are the neutral, 

anionic, and cationic Mulliken populations of an atom k in an 

inhibitor molecule, respectively. The Fukui indices for the 

molecules studied in the aqueous phase have been graphically 

represented in Figure 8. According to the Fukui index 

calculations presented in Figure 8, it can be observed that for 

all studied inhibitors, the highest values of fk+ and fk- are 

distributed over the regions of the pyrazolo-pyridazine 

moiety, chlorine atoms, as well as various nitrogen and 

oxygen heteroatoms. These regions exhibit significant 

nucleophilic and electrophilic characteristics. These atoms 

are thus the preferred sites that release electrons when 

targeted by a nucleophilic reagent. Therefore, all these sites 

in the studied molecules could be responsible for the 

inhibition efficiency. 

 

 

 

 

 

 

 



International Journal of Chemical and Biochemical Sciences (IJCBS), 25(19) (2024): 78-94 

 

CHAHMOUT et al., 2024     83 
 

 

 

Table 1. Chemical composition of stainless steel 

 

Elements Fe C Si Mn P S N Cr Co Mo Ni Cu 

% Bal 0.04 0.41 1.46 0.07 0.03 0.08 18.5 0.16 0.33 7.81 0.51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Py-3 

 

Py-4 

 

Figure 1. Chemical structure of the investigated v: Py-3 and Py-4 
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Figure 2. Nyquist plot of stainless steel in 2M H2SO4 solution with and without different concentrations of Py-3 and Py-4 
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Figure 3. Equivalent circuit used to model the impedance diagrams 

 

 

 

 

Table 2. Electrochemical impedance parameters in the absence and presence of inhibitors at different concentrations 

 

 

Conc. 

M 

Rs 

Ω cm² 

Qf 

µFcm² 
nf 

Rf 

Ω cm² 

Qtc 

µF cm2 
ntc 

Rtc 

Ω cm² 

Rp 

Ω cm2 
imp% θ 

H2SO4  2M 

-- 0.8 958 0.864 26.8 625 1 8.1 34,9 -- -- 

Py-3 

10-6 0.7 673 0.875 66.4 433 0.984 15.0 81,4 57,1 0.571 

10-5 0.6 511 0.910 72.0 406 0.858 29.4 101,4 65,6 0.656 

10-4 2.0 162 0.934 23.0 391 0.664 315.3 338,3 89,7 0.897 

10-3 1.5 185 0.895 37.3 356 0.696 453.2 490,5 92,9 0.929 

Py-4 

10-6 0.9 698.7 0.878 57.2 613 0.729 23.0 80,2 56,5 0.565 

10-5 0.8 522.3 0.865 128.8 576 0.844 88.2 217 83,9 0.839 

10-4 0.6 60.6 0.999 40.7 341 0.688 1155 1195,7 97,1 0.971 

10-3 0.7 90.8 0.950 40.5 216 0.706 1803 1843,5 98,1 0.981 
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Figure 4. Bode plots of the steel in a 2M H2SO4 solution in the absence and presence of inhibitors at various concentrations. 
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Table 3. Adsorption isotherm models 

 

Isotherme Forme linéaire Courbe Réf 

Langmuir 𝑘𝑎𝑑𝑠𝐶𝑖𝑛ℎ =
𝜃

1 − 𝜃
 

𝐶𝑖𝑛ℎ

𝜃
= 𝑓(𝐶𝑖𝑛ℎ) [48] 

Freundlich 𝜃 = 𝐾𝑎𝑑𝑠𝐶𝑖𝑛ℎ
𝑛  𝑙𝑛𝜃 = 𝑓(𝑙𝑛𝐶𝑖𝑛ℎ) [49] 

Temkin 𝑒−2𝑓𝜃 = 𝑘𝑎𝑑𝑠𝐶𝑖𝑛ℎ 𝜃 = 𝑓(𝑙𝑛𝐶𝑖𝑛ℎ) [50] 

Flory-Higgins 
𝜃

𝑐𝑖𝑛ℎ

= 𝑘𝑎𝑑𝑠(1 − 𝜃)𝑎 𝑙𝑛
𝜃

𝐶𝑖𝑛ℎ

= 𝑓(𝑙𝑛1 − 𝜃) [51,52] 

Frumkin 
𝜃

1 − 𝜃
𝑒−2𝑓𝜃 = 𝑘𝑎𝑑𝑠𝐶𝑖𝑛ℎ 𝑙𝑛 (𝐶𝑖𝑛ℎ

1 − 𝜃

𝜃
) = 𝑓(𝜃) [53] 

El-Aawady (
𝜃

1 − 𝜃
)

1
𝛾⁄

= 𝑘𝑎𝑑𝑠𝐶𝑖𝑛ℎ 𝑙𝑛(1 − 𝜃) = 𝑓𝑙𝑛 (
𝜃

𝐶𝑖𝑛ℎ

) [54] 
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Figure 5. Langmuir adsorption isotherm of Py-3 and Py-4 on the surface of stainless steel at 298K.

  

Table 4. Thermodynamic parameters for inhibitor adsorption on steel at 298K. 

Kads  (L/mol) ΔGads  (Kj/mol) R² Slopes 

Py-3 

32.6 104 -41.4 0,99999 1,07 

Py-4 

81.9104 -43.6 1 1,02 
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Figure 6. Percentage of species observed as a function of the pH diagrams of the molecules studied using MarvinSketch software 

 

 

Table 5. Quantum chemical descriptors calculated for neutral and protonated forms at the B3LYP/6–311G (d,p) basis set in 

aqueous phase 

Parameter Py-3 Py-4 H-Py-3+ H-Py-4+ 

EHOMO (eV) -6,285 -6,363 -6,860 -7,049 

ELUMO (eV) -2,387 -2,409 -2,906 -2,934 

Egap (eV) 3,897 3,954 3,954 4,114 

 (eV) 1,948 1,977 1,977 2,057 

 (eV) 0,513 0,505 0,505 0,486 

(eV) 4,336 4,386 4,883 4,991 

∆N 0,124 0,109 -0,0161 -0,041 
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Figure 7. Optimized structures and distribution of electron density on the HOMO and LUMO orbitals of the neutral and 

protonated forms of the inhibitors studied at the DFT/B3LYP6–311G (d,p) basis set  
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Figure 8. Graphical representations of the calculated Fukui index for the molecules studied in aqueous solution
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4. Conclusions 

This work has shown that the two organic molecules 

are excellent inhibitors for steel in acid media, even at very 

low concentrations. The Py-4 compound is regarded as the 

most effective inhibitor, with an inhibitory efficiency of 

98.1%. Furthermore, the variation of C/θ with the 

concentration of our inhibitors indicates that their adsorption 

on the metal surface follows the Langmuir isotherm model. 

The standard free energy of adsorption ∆Gads calculated for 

the both inhibitors indicates that the adsorption of our 

inhibitors on the steel surface is chemical type. On the other 

hand, the quantum chemical calculations give a better 

overview on the reactivity of tested inhibitor towards 

stainless steel which they are in good agreement with the 

experimental findings. Fukui indices revealed that the most 

probable sites for electrophilic and nucleophilic attacks are 

the regions of the pyrazolo-pyridazine fraction, the chlorine 

atoms, as well as the various nitrogen and oxygen 

heteroatoms. 
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