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Abstract 

Building structures are the structural frameworks and systems that sustain, protect, and provide utility to build 

environments. These buildings are essential elements of construction, serving a variety of architectural shapes and functions. 

Building structures shape urban as well as rural environments and ensure the safety and usefulness of the places that contain. 

Early discovery allows for the installation of effective precautions, lowering the probability of incidents and wellness concerns for 

building workers and tenants. The identification of dangerous substances immediately improves construction waste management 

and reduces project hazards such as overinflated costs and delays. The study describes the Improved Chimp Optimization with 

Linear Logistic Regression Model (ICO-LLRM) to enhance safety measures in the construction sector by using probabilistic 

techniques to predict and detect dangerous substances. A comprehensive harmful drug database is created by meticulously 

matching, verifying, and checking authentic facts for dependability. The study seeks to discover obstacles in establishing machine 

learning (ML) pipelines and validating various prediction models. The suggested ICO-LLRM strategy outperforms previous 

techniques in terms of both overall and specific accuracy, with rates of (91.2%) and (92.3%), respectively. Notable discoveries 

included the presence of asbestos (82%) and (Polychlorinated Biphenyls) PCBs (50%) in building materials. While the algorithms 

perform with a short dataset, the research recommends gathering additional facts to enhance the approach's applicability across 

different building types. This study contributes valuable insights to the detection and anticipation of dangerous materials in 

construction, offering a method to optimize waste elimination and enhance risk management in building projects. 
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1. Introduction 

  

 Dangerous materials detection has served an 

important role in evaluating structural strength and sustaining 

efficient operation since the civil infrastructure is prone to 

degradation and impairment over its life expectancy [1]. 

Several nations are focusing on the green economy, which 

aligns with the universal Sustainable Development Goals 

(SDGs). Recycling systems progressively include both biotic 

and abiotic landfills [2].  Building work consumes 60% of 

the raw materials used annually, including stones, rocks as 

well as sand, and 30% of raw wood products. The structural  

 

 

section has a considerable impact on the overall 

environmental situation. Private buildings reflect the created 

state, substances, and shapes play a crucial role in overall 

usability [3]. This dangerous substance was employed in 

various places worldwide. This substance has been utilized 

for mystical and spiritual reasons since the beginning. At 

temples, oil light wicks were composed of the substance to 

endure longer [4].  To ensure sustainable construction 

practices, it is crucial to identify potential threats to building 

members upon completion and occupancy. Determine 
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possible hazards at the planning stage and throughout 

construction to guide end-of-life administration, including 

transferring materials throughout breakdown, gain and re-

use, and removing waste after destruction [5]. Inadequate 

waste management has been attributed to inadequate 

detection and elimination of dangerous substances from the 

location, along with inadequate classification of waste 

division, leading to variability and possible dangerous 

substance concentration [6]. Utilization of dangerous 

emissions escaping to the surroundings causes significant 

pollution of the atmosphere, soil, water, and plants, animals, 

and aquatic beings, ultimately affecting human well-being 

and living conditions [7]. Dangerous compounds from 

numerous sectors worldwide may endanger both humans and 

our surroundings. Risky substances may exist in solid enough 

liquid states or gaseous forms are found in the atmosphere. 

Dangerous products include anything containing toxic 

compounds, according to assessments. Poor handling of 

waste may lead to the release of harmful heavy metals into 

the natural world. According to the Star, 15 percent of the 

building substances are gathered by waste material investors, 

with the remainder ending at illegal waste dumps with 

inadequate waste handling procedures [8]. The fourth 

industrial revolution is expected to bring novel smart 

technologies like information and communications 

technology, artificial intelligence, and virtual reality to the 

building sector. While new technologies have been 

developed, preserving the environment remains a challenge 

owing to uncontrolled consumption of fuel, excessive use of 

materials and dangerous substance outputs [9]. However, 

insufficient awareness of dangerous substances in buildings 

is likely to lead unexpected incidents throughout construction 

or remodeling. Around 20% of the extra expenditures for 

severe detoxification were documented in the demolition of 

housing developments. Risky materials inventory of 

destroyed and refurbished buildings may provide useful 

insights into dangerous substance identification trends. 

Modernization and AI in acquiring data and depiction can 

boost accessibility to data and decisions for substance 

evaluations [10]. The research [11] examined methods to 

identify and reduce fall risks in building schedules during the 

planning stages. The research compares human and 

automatic security simulations for fall protection devices. 

Additionally, it explains the specifics of concepts and as-built 

situations in which preventive safeguards are represented. 

The work [12] assessed a modification to the Danish 

Environmental Agency study on dangerous material use in 

sustainable buildings and measured the quantities of 

chemicals used in 12 building product groups. The research 

[13] investigated the utilization of geologic and biological 

waste in building projects is becoming more popular and 

regulated to provide quality assurance. Building items must 

fulfill safety criteria for radon, gamma rays and other 

dangerous chemicals to provide a safe interior atmosphere.  

The research [14] explored toxic heavy metals and organic 

substances in dangerous industrialized buildings and 

demolition scrap from a chemicals processing facility, 

including their absorption capability, safety and ecological 

concerns. Classical biological examinations are costly and 

lengthy, resulting in minimal uptake. To address these 

difficulties, the study [15] addressed the feasibility of using 

certified recordings as data inputs to accomplish massive 

dangerous building substances control in reality. Identifying 

the qualified construction categories in concern helps 

minimize the possibility of unanticipated costs and delays 

caused by severe clearance. The study [16] profiled 

characteristics and effects caused by on-board dangerous 

substances like asbestos fibers, polychlorinated biphenyls, 

fiberglass, hard plastic and oil spills that can cause serious 

consequences for the natural world and the health of humans. 

The study [17] outlined each of the initial stages in the design 

of supplementary shielding employing dangerous substances, 

construction materials (cement or steel), and the 

manufacturing of filler components. The transport and 

disposal of dangerous materials pose a significant 

environmental challenge. Their stability and solidity (S/S) 

result in hard weight that is employed as an additional base 

material. The Study key Contributions are as follows. The 

advent of the better ICO-LLRM is a fresh and better way to 

find dangerous substances. A dangerous substance database 

is created by painstaking methods of matching, validating 

and assuring the trustworthiness of real information. By 

trying to identify impediments in constructing ML pipelines, 

the study sheds light on the difficulties that practitioners and 

academics may encounter when adopting predictive models 

for dangerous compounds. The study aims to validate several 

prediction models and provide a critical assessment of the 

performance of various techniques. This adds to the 

expanding body of research about the efficacy and reliability 

of prediction models for dangerous materials in construction 

environments. The study aims to achieve the following 

objectives: Section 2 explains the materials and methods 

used in the research, while Section 3 summarizes the results 

and interacts in thorough discussions. Finally, Section 4 

highlights the study's conclusions and prospective routes for 

further study. 

 

2. Materials and Methods 

 

This section explains the study's method and the 

major objectives carried out in the research. Utilizing ML to 

anticipate the existence of dangerous substances in building 

components entails analyzing information and anticipating 

the possibility of dangerous substances or compounds in a 

certain setting. According to existing data, this technique 

makes use of ML techniques' ability to discover trends, 

categorize data and generate forecasts. 

 

2.1. Dataset 

 

A data collection comprising 927 observation 

reports and a national building registry was analyzed to 

identify dangerous substances. Data has been divided into 

domestic (detached dwelling and multi-unit housing) and 

commercial subgroups by the building's category codes, 

resulting in an almost homogenous observing cluster. The 

public and academic institutions have higher-quality 

inventory information due to periodic renovations and 

disinfection data. The finding data include dangerous 

material stocks of destroyed and restored buildings. 

Buildings constructed of particular significance because of 

the widespread of PCB containing and asbestos components 

in construction. The majority of papers collected contained 

extensive inventory, including studies and procedures that 

specified dangerous goods and buildings under investigation. 
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2.2. Data preprocessing 

 

The preprocessing of includes evaluation, database 

deficiency responsibility, and component construction 

occurred to datasets generated from inventory and 

registrations. To optimize data usage to contrast associations 

of PCB components and asbestos in commercial structures 

with inscriptions the research range expanded to include all 

the dangerous substances in the construction inventory.  To 

simulate probable dangerous substances, the condition and 

volume of stocks were examined by Equation (1).  

distribution method for various inventories kinds was built 

upon extensive dangerous substance data and observer 

expertise. Consultant evaluations and procedures included 

identification information for dangerous substances, but 

management and destruction programs mentioned the 

availability of dangerous substances. 

 

𝑧 =
(𝐼𝑟×𝑛𝑟+𝐼𝑝×𝑛𝑝+𝐼𝑐×𝑛𝑐+𝐼𝑑×𝑛𝑑)

𝑀
× 𝐿  (1) 

 

𝑧 = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑟𝑎𝑡𝑖𝑛𝑔 [0– 100]. 
 

J = Assessment kind for weighing individual finding 𝑠𝑗 =  1 

if it is an information (𝑞), 𝐽 =  0.57 it is procedure (o), J = 

0.7 it is a control plan(d), andJ = 0.30 is a Destruction design 

(c).m= The entire number of occurrences in the analyzed 

subcategory [0 <m].M= Total amount of events in the 

database. L = Value depends on material quantity.𝐿 =
 1 𝑖𝑓 𝑚 >=  350, 𝐿 =  0.75 𝑖𝑓 200 =<  𝑚 < 300, 𝐿 =
 0.5 𝑖𝑓 300 =<  𝑚 <  200, 𝐿 =  0.30𝑖𝑓 200 =<  𝑚 <
300, 𝐿 = 0 𝑖𝑓 𝑚 < 200.To increase information quality and 

size, the omissions of forecasting factors are substituted by 

the k nearest neighbor’s technique (KNN) with the average 

of both the neighboring properties in the initial data sample. 

Our primary elements included spatial variables, cartographic 

elements (constructing categories and kinds) and structure 

specifications (constructing period, elevated region, count of 

floors, cellars, hallways, housing, and ventilated systems). 

 

2.3. Improved Chimp Optimization with Linear Logistic 

Regression Model (ICO-LLRM) 

 

The ICO-LLRM is a unique technique for detecting 

dangerous substances in construction areas that was 

presented in the research. The approach combines the ideas 

of Chimp Optimization, an optimization algorithm based on 

chimp feeding behavior, with Linear Logistic Regression, a 

statistical modeling methodology used for classification 

problems. This hybrid model known as ICO-LLRM 

combines the benefits of optimization and regression to 

improve its accuracy and effectiveness in detecting the 

presence of dangerous substances in building sectors.   

 

2.3.1. Linear Logistic Regression Model (LLRM) 

 

LLRM as an approach for modeling a dependent 

binary variable in the building sector. In model construction, 

a single state of the variable of interest is recorded as 0, while 

another is encoded as 1. Typically, an assessment of 1 

indicates situation which is most fascinating or desirable. A 

logistical system depends upon a linear logistical task that 

has a certain type:   

 

𝑒(𝑦) =  
𝑓𝑦

1+𝑓𝑦    (2) 

 

Where 𝑌 ∈ (−∞, +∞),The LLRM coefficient looks like an 

elongated character 𝑆, with variables ranging from 0 to 1. 

The equation first oscillates at 0 and quickly increases to 1 

once the limit is achieved.  This approach models 

occurrences based on an increase in recurrence frequency 

upon attaining an ideal level. Particularly, the linear logistic 

framework is described below:   
 

𝑂(𝑤) =  
exp (𝑎0+∑ 𝑎𝑗𝑤𝑗

𝑚
𝑗=1 )

1+exp(𝑎0+∑ 𝑎𝑗𝑤𝑗
𝑚
𝑗=1 )

   (3) 

 

In this case, 𝑂(𝑤) represents the anticipated parameter is 

going to be equal to one.𝑎1 … . 𝐴2 Regression coefficients 

𝑤1 … . 𝑤2 represent variables of independence, which might 

be qualitative or numerical. The most successful strategy is 

decided by the boundaries of a collection of data. A Linear 

logistic equation may be used to compute the likelihood of a 

modeled occurrence for an item based on its properties 

(𝑤1 … . 𝑤2). the weighted mean of the values of attributes is 

used. 

 

2.3.2. Improved Chimp Optimization (ICO)  

 

ICO is an intuition basis derived from chimp 

hunting behavior. Chimps use specialization of work to find 

substances. The assailant constitutes the population's ruler. 

The position of different types of chimpanzees dropped as 

they participated in hunting. The theoretical framework is 

summarized as follows. Calculations (4) and (5) modify the 

location of the chimp 

 

𝑊1(𝑠 + 1) =  𝑐(𝑠) − 𝑏1. 𝑐𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟  

 

𝑊2(𝑠 + 1) =  𝑊𝐵𝑎𝑟𝑟𝑖𝑒𝑟(𝑠) − 𝑏2. 𝑐𝐵𝑎𝑟𝑟𝑖𝑒𝑟                   (4) 

 

𝑊3(𝑠 + 1) =  𝑊𝐶ℎ𝑎𝑠𝑒𝑟(𝑠) − 𝑏3. 𝑐𝐶ℎ𝑎𝑠𝑒𝑟  

 

𝑊4(𝑠 + 1) =  𝑊𝐷𝑟𝑖𝑣𝑒𝑟(𝑠) − 𝑏4. 𝑐𝐷𝑟𝑖𝑣𝑒 

 

𝑊𝑐ℎ𝑖𝑚𝑝(𝑠 + 1) =  
𝑊1+𝑊2+𝑊3+𝑊4

4
                                       (5) 

 

The chimp's location changes based on four recorded 

positioning categories (𝑐𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 ,𝑐𝐵𝑎𝑟𝑟𝑖𝑒𝑟,𝑐𝐶ℎ𝑎𝑠𝑒𝑟 , and𝑐𝐷𝑟𝑖𝑣𝑒) 

and the present repetition amount (s). The dynamical 

coefficientb and c scalar d are given in Equation (6). 

 

𝑏1 = 2. 𝑒1. 𝑞1 − 𝑒1, 𝑐𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 = |𝑑. 𝑊𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟(𝑠) − 𝑛. 𝑊(𝑠)| 

 

𝑏2 = 2. 𝑒2. 𝑞1 − 𝑒2, 𝑐𝐵𝑎𝑟𝑟𝑖𝑒𝑟 = |𝑑. 𝑊𝐵𝑎𝑟𝑟𝑖𝑒𝑟(𝑠) − 𝑛. 𝑊(𝑠)| 

 

𝑏3 = 2. 𝑒3. 𝑞1 − 𝑒3, 𝑐𝐶ℎ𝑎𝑠𝑒𝑟 = |𝑑. 𝑊𝐶ℎ𝑎𝑠𝑒𝑟(𝑠) − 𝑛. 𝑊(𝑠)| 

 

𝑏4 = 2. 𝑒4. 𝑞1 − 𝑒4, 𝑐𝐷𝑟𝑖𝑣𝑒𝑟 = |𝑑. 𝑊𝐷𝑟𝑖𝑣𝑒𝑟(𝑠) − 𝑛. 𝑊(𝑠)|

      (6) 

. 

The coefficient edrops exponentially from 3.0 to 0 over 

iterations. d = 2r2. 𝑑1 and 𝑑2 are at random from [1, 2]. N 
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represents a chaotic mapping scalar. The chaotic paradigm is 

employed for location update fore≥ 0.5, as demonstrated in 

Equation (4) or Equation (5) is applied. Algorithm1 displays 

the pseudo-code for the ICO: 

 

𝑊𝑐ℎ𝑖𝑚(𝑠 + 1) =  𝐶ℎ𝑎𝑜𝑡𝑖𝑐_𝑣𝑎𝑙𝑢𝑒  (7) 

 

Algorithm 1. Pseudo-code of ICO 

 

Set the sample quantity and the highest number of repeats. 

Initializes positions of chimps 

Determine the condition of every chimp. 

Choose attackers, obstacles, chasers, and motorists. 

In 𝑠 < 𝑡ℎ𝑒𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

Every chimp 

When𝜇 < 0.5 

Modify the present chimp's placements via the Eq. (4) 

Else if 

Modify the present chimp's placements via the Eq. (5) 

End if 

End for 

Improve 𝑒, 𝑑, 𝑛, 𝑝𝑎𝑛𝑑𝑐 

Compute the condition of every chimp. 

Improve𝑊𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟 , 𝑊𝐵𝑎𝑟𝑟𝑖𝑒𝑟 , 𝑊𝐶ℎ𝑎𝑠𝑒𝑟 , and 𝑊𝐷𝑟𝑖𝑣𝑒𝑟  

𝑠 = 𝑠 + 1 

End While 

Revisit𝑊𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟  

 
3. Results and discussion 

 

This section shows the outcomes of the expected 

model generation through ML, network output analysis and 

representation and possibility estimate of asbestos and PCB -

containing substances in functioning structures.  Data was 

analyzed utilizing evaluations to determine the presence of 

harmful compounds in buildings and to produce high-quality 

data for simulation. PCB and asbestos were detected in 50% 

and 82% of domestic construction and commercial materials, 

respectively. A greater inquiry revealed that 44% of 

observations included both asbestos and PCB, 39% included 

both chemicals and 25% possessed both. Nearly 10% of 

structures included a pair of PCB substances, whereas 

asbestos substances accounted for 50% and 82%. PCB 

capacitance in lighting or flames was detected in over half 

(53%) of the structures, and nearly (50%) of the structures 

had. PCB connectors or protected double-glazed windows. 

They found the asbestos components included piping 

insulation (68%), glass or door shielding (63%), and concrete 

walls (62%), then floor tiles (51%), connectors (50%), 

ventilator channels (45%), and carpeting glued (43%). one-

third of the structures were determined to have asbestos tiles 

or cement. Figure 1 illustrates the Output of substances 

predicted in building materials. Table 1 shows that PCB and 

asbestos materials have been employed in four buildings 

(domestic and Commercial) (A, B, C, and D) records to 

forecast labeling. PCB capacitance and asbestos piping 

insulation were predicted to be present in 14%, 69%, and 

26% of the area's Domestic building inventory. Commercial 

buildings had higher percentages of dangerous substances 

56%, 104% and 72% supporting previous specialist 

conclusions. The findings confirmed the anticipated 

(possibility) class's prior statistics and revealed intriguing 

tendencies. Domestic buildings were less than Commercial 

buildings to include PCB capacitance and asbestos window 

and door insulating, except the Domestic structures in 

Building D. In 2015, there was a considerable decrease in the 

use of asbestos piping insulation in commercial structures. 

This pattern was evident in other dangerous substances 

owing to the PCB and asbestos regulations. Pleasantly, the 

prevalence of PCB capacitance and asbestos piping 

insulation in Domestic structures declined with the time 

period, unlike the pattern seen in asbestos window and door 

insulation. Domestic buildings in Buildings A, B, C and D 

had less ranges of trust than commercial buildings. However, 

Building D data indicated distinct growth was considered 

unreliable and not reflective without additional training data 

from the region. Fig.2, Fig.2 and Fig.4 show the Periodical 

Domestic and Commercial Buildings Output. This section 

compares the proposed technique ICO-LLRM's overall and 

specific accuracy to the existing techniques Support Vector 

Machine (SVM) [18] and Decision Tree (DT) [19]. This 

approach compares the testing data outcomes for substance 

forecasting in their inquiry to our suggested method. The 

testing data demonstrates that our suggested method for ICO-

LLRM achieves an overall accuracy of 91.2% in SVN and 

DT, compared to 88.9% and 87.1% respectively.  The testing 

results reveal specific accuracy in SVN and DT of 85.7% and 

86.5%, respectively, with our suggested technique ICO-

LLRM at 92.3% Table 2 and Fig.5 depicts the overall and 

specific accuracy of testing data. The major goal is to 

anticipate dangerous substances in building sites by 

describing detection techniques, and the paper offers the 

ICO-LLRM as a unique way to this task. The research 

creates a helpful harmful material database by matching, 

validating, and assuring the veracity of genuine facts. The 

study attempts to uncover challenges in constructing ML 

pipelines and verify several prediction models. Particularly, 

the identification of common dangerous substances like PCB 

and asbestos, which account for 50% and 82% of building 

goods, lends practical importance to the research. PCB and 

asbestos were discovered in 50% and 82% of home and 

commercial building materials. An investigation indicated 

that 44% of the analysis included asbestos and PCBs, 39% 

featured both substances, and 25% contained both. Almost 

all buildings had a pair of PCB chemicals, whereas asbestos 

represented 50% and 82%. PCB and asbestos had been 

identified in 50% and 82% of domestic and commercial 

building materials. An investigation indicated that 44% of the 

analysis included asbestos and PCBs, 39% featured both 

substances, and 25% contained both. Nearly 10% of 

buildings had a pair of PCB chemicals, though asbestos 

contributed 50%.  The findings show that the ICO-LLRM 

methodology outperforms previous techniques in terms of 

overall and specific accuracy, with 91.2% and 92.3%, 

respectively. The methods perform well on the tiny dataset, 

but the research admits the possibility of enhanced relevance 

to other types of construction by the acquisition of more data, 

hence lowering the danger of excessive fit. 
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Figure 1. Output of the Substances Predicted in building materials 

 

 

Table 1.  PCB and Asbestos materials in Buildings 

 

Unniventoried Structures 
Building 

(A) 

Building 

(B) 
Building (C) 

Building 

(D) 
Total 

PCB Capacitance 

Dogmatic 

Commercial 

All 

 

0.13 

0.42 

0.22 

 

0.16 

0.70 

0.31 

 

0.13 

0.60 

0.110 

 

0.90 

0.568 

0.11 

 

0.14 

0.56 

0.30 

Asbestos pipeline insulating 

 

Domestic 

Commercial 

All 

 

0.75 

0.110 

0.68 

 

0.55 

0.95 

0.40 

 

0.89 

0.110 

0.56 

 

0.43 

0.87 

0.93 

 

0.69 

0.104 

0.56 

Asbestos Windows 

and doors  insulating 

 

Domestic 

Commercial 

All 

 

 

0.9032 

0.69 

0.35 

 

 

0.22 

0.63 

0.26 

 

 

0.24 

0.92 

0.35 

 

 

0.24 

0.37 

0.33 

 

 

0.26 

0.72 

0.31 
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Figure 2. Output of PCB capacitance 

 

 

Table 2. Results of Overall and Specific Accuracy

  

 

Methods 

 

Overall Accuracy (%) 

 

Specific Accuracy (%) 

Testing Data Testing Data 

SVM [18] 88.9 85.7 

DT [19] 87.1 86.5 

ICO-LLRM [proposed] 91.2 92.3 
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Figure 3. Output of Asbestos piping Insulating 

 

 

 

Figure 4.  Output of Asbestos Windows and Doors Insulating 
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Figure 5. Outcome of Overall and Specific Accuracy 

 

 

 

4. Conclusions 

 
The research emphasizes the major advantages of 

identifying and anticipating dangerous substances in 

buildings. Asbestos and PCB were discovered in 82% and 

50% of domestic and commercial building materials. The 

findings show that the suggested ICO-LLRM strategy 

outperforms previous techniques, obtaining 91.2% overall 

accuracy and 92.3% specific accuracy. According to the 

report, PCB and asbestos are the most common harmful 

substances found in building materials, accounting for 50% 

and 82%, respectively. Despite the algorithms' success with 

the tiny dataset, the researchers believe that obtaining more 

data might improve the model's applicability to diverse 

building types and lessen the danger of over fitting. The study 

reveals the average effect of each feature on the model's result 

volume. The research suggested integrative ML approach has 

the potential for the management of dangerous substances and 

to assist with risk assessment in chosen disassembly 

operations. The results highlight the necessity of ongoing data 

gathering and model refining for wider applicability in the 

building industry, eventually enhancing trash removal 

reliability and effectiveness. Future research will concentrate 

on using ML to anticipate the presence of dangerous 

substances in building components. This study intends to 

enhance handling risks, construction waste disposal 

techniques, and overall building security. The project will look 

at algorithmic developments that are designed for accurate 

drug detection, employing varied datasets and real-time sensor 

data. Multimodal sensing and imaging methods, such as 

spectral imaging, will be investigated to broaden the spectrum 

of detected compounds. 
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