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Abstract 

Organic chemistry has transformed the incorporation of Artificial Intelligence (AI) into Computer-Assisted Synthesis 

Planning (CASP), which has solved long-standing issues with synthesis route prediction. Machine Learning (ML) algorithms 

enhance accuracy and efficiency in retrosynthetic analysis, transforming the focus from labor-intensive tasks to creative problem-

solving. The potential impact extends to drug discovery, accelerating the process and reducing costs in pharmaceutical research. 

This study explores and evaluates the integration of AI, specifically using Chaos Chemical Reaction Optimized Adaptive K-

Nearest Neighbor (CCRO-AKNN) in CASP. The aim is to enhance efficiency, accuracy, and innovation in organic chemistry 

through advanced ML algorithms, ultimately contributing to novel compound discovery. The methodology involves collecting a 

dataset, utilizing Principal Components Analysis (PCA) for feature extraction, and implementing CCRO-AKNN for synthesis 

planning. PCA reduces dimensionality, aiding AI models in predicting synthetic pathways. CCRO-AKNN, a hybrid approach, 

combines Chaos Chemical Reaction Optimization (CCRO) and Adaptive K-Nearest Neighbor (AKNN) for effective chemical 

space exploration. The proposed CCRO-AKNN method demonstrates superior performance in Accuracy, Precision, Recall, and 

F1-Score compared to alternative approaches (DCGAN, BCNet). The results highlight the effectiveness of the integrated AI 

approach in CASP, showcasing its potential to advance chemical synthesis planning. The study concludes that the integration of 

AI, specifically employing CCRO-AKNN, significantly enhances the capabilities of CASP in organic chemistry. The study 

improves accuracy and efficiency underscoring the potential for transformative breakthroughs in chemical discovery and drug 

development. 
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1. Introduction 

 

 Artificial intelligence (AI) has become a 

revolutionary force in many disciplines, revolutionizing 

scientific research and technology breakthroughs in an ever-

evolving environment. Organic chemistry is one area that 

has made great progress, especially in Computer-Assisted 

Synthesis Planning (CASP). A crucial step in organic 

chemistry is synthesis planning, which is creating effective 

pathways for the synthesis of desired compounds. Synthesis 

planning has always been a laborious and complex process 

[1]. The history of organic chemists has depended on their 

proficiency and knowledge to create artificial processes that 

often maneuver through intricate chain of reactions and 

chemical metamorphoses. However, there were significant 

obstacles due to the difficulties in anticipating the best 

routes, considering large response databases, and dealing 

with retrosynthetic analytical problems [2]. Chemical 

synthesis is changing because of AI integration into CASP, 

which aims to solve these issues by using Machine Learning 

(ML), and sophisticated algorithms. The main goal of 

incorporating AI into CASP is to speed up the synthesis 
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planning process, improve chemical pathways, and make it 

easier to find new compounds. AI-driven platforms train 

models that can anticipate feasible synthetic routes by using 

large databases of chemical processes, historical synthesis 

paths, and molecule structures [3]. The combination of 

computing power and data-driven insights enables 

researchers to make unprecedented precision decisions as 

they negotiate the complexities of synthesis planning [4]. AI 

in CASP is further enhanced by ML, which makes it 

possible to analyze intricate, non-linear correlations that are 

seen in chemical data [5]. The CASP not only improves 

retrosynthetic analysis accuracy but also takes into account 

the complex and varied nature of organic chemistry. 

Researchers focus on their skills for more creative and 

intellectually stimulating areas of the scientific process by 

automating repetitive and time-consuming parts of synthesis 

planning [6]. This change in emphasis from physical labor to 

creative problem solving is going to be a catalyst for 

chemical discovery breakthroughs and create a vibrant, 

cooperative atmosphere in the scientific community. 

Moreover, the incorporation of AI into CASP has the 

potential to expedite the process of discovering new drugs 

[7]. Organic synthesis is a key component of pharmaceutical 

research to create novel medicinal molecules, and AI can 

greatly accelerate the discovery and optimization of drug 

candidates by streamlining synthesis planning. This might 

have a significant impact on healthcare by cutting down on 

the time and costs needed to get new drugs to the market, 

which would eventually help people around the globe [8]. 

The use of AI in computer-aided synthesis planning signifies 

a revolutionary development in the field of organic 

chemistry. The integration of ML algorithms with the 

extensive chemical knowledge base ushers in a new age of 

efficiency, accuracy, and creativity in synthesis planning [9]. 

Researchers are on the verge of revolutionary breakthroughs 

that might completely change the chemical discovery 

landscape and open up new avenues for study as they work 

to fully realize the promise of AI in CASP. Despite its 

advancements, AI in computer-assisted synthesis planning 

faces challenges such as potential biases in training data and 

the complexity of handling unforeseen reaction scenarios, 

necessitating ongoing refinement and vigilance [10]. This 

study aims to explore and evaluate the integration of AI in 

computer-assisted synthesis planning, seeking to enhance 

efficiency, accuracy, and innovation in organic chemistry by 

leveraging advanced ML algorithms. The overarching goal is 

to accelerate the synthesis planning process, optimize 

chemical routes, and contribute to the discovery of novel 

compounds with profound implications for scientific 

research and drug development. 

 

The study [11] introduced synthesis planning tools 

developed, with a focus on drug discovery and computer-

assisted synthesis planning (CASP). It explores the 

relationship between computational and experimental 

scientists, algorithmic developments, and the assimilation of 

automation and artificial intelligence into chemical 

processes. The research [12] investigated the use of AI and 

machine learning in synthetic planning and predictive 

chemistry. It demonstrates how the MLPDS collaboration, 

which consists of 13 industry participants and MIT, 

developed and assessed a data-driven synthesis planning, 

and program.  The article [13] focused on CASP, namely 

investigating a template-based retrosynthetic planning tool 

trained on a variety of datasets, such as extracts from the 

USPTO and internal Electronic Laboratory Notebooks. The 

research [14] addressed automating chemical development 

procedures to streamline them. Design, route planning, and 

execution are examples of features that have been separately 

optimized in previous research. This work combines robotic 

execution and expert-refined chemical recipe creation with 

CASP. The method, which represents a substantial 

advancement towards autonomous chemical synthesis, uses 

robots for scalable, repeatable synthesis and AI for route 

planning. The study [15] examined the growing repertoire of 

enzymes available for biocatalysts and emphasized the 

possibility of building effective enzymatic cascades. Current 

methods fall short of realizing the full promise of 

biocatalysts, despite advancements in synthetic biology and 

organic chemistry to computer-aided synthesis planning. The 

authors present RetroBioCat, an approachable tool that is 

redefining the design of biocatalytic cascades by combining 

precisely programmed reaction rules with the discovery. The 

article [16] focused on chemoenzymatic synthesis, 

leveraging organic and enzyme chemistry to enhance 

sustainability in chemical manufacturing. They introduced a 

multistep retro synthesis search algorithm, combining the 

synthesis planner with a database of biocatalytic reaction 

rules to propose chemo-enzymatic routes for various 

compounds, demonstrating efficiency and offering 

alternative pathways. The article [17] provided the 

instruments used in plastic and reconstructive surgery today 

are labor-intensive and imprecise. Although helpful, the 

current computer-assisted surgical planning systems are 

intricate and heavily reliant on human input. With the use of 

machine learning for risk assessment, treatment planning, 

and diagnostics, this work presented a large-scale clinical 3D 

morphable model that exhibits excellent sensitivity and 

specificity in patient diagnosis as well as precise surgical 

outcome simulation. 

 

2. Materials and Methods 

 

In this part, this study has suggested AI to the 

Process of CASP using the Chaos Chemical Reaction 

Optimized Adaptive K-Nearest Neighbor (CCRO-AKNN) 

method. A dataset was first collected for study and this study 

uses the PCA for feature extraction. The CCRO-AKNN 

method demonstrates the effectiveness in overcoming the 

difficulties associated with the AI to Process of CASP. The 

flow of the suggested technique is shown in (Fig.1). 

 

2.1. Data Samples 

 

The study evaluated the top 120 small molecule 

therapeutics and virtual libraries that will be created in 2022 

using the prediction performance of 1630 compounds that 

came from 39 models trained on various reaction datasets. 

Models significantly overestimated synthesis feasibility for 

virtual libraries but underestimated it for top medicines, 

regardless of the response dataset. Both examples had an 

average of four synthesis stages, however the duration varied 

according to the amount of dataset. A smaller search area, 

and smaller datasets (<6 seconds) facilitated route finding, 

but bigger datasets presented difficulties for the simplistic 

design. The model's preference for regularly occurring 
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reactions made it difficult to work with complicated 

pharmaceutical compounds that have sophisticated ring 

systems and structures resembling natural products. Even 

with these drawbacks, virtual libraries showed better 

prediction performance than leading medicines, highlighting 

the importance of commonly used responses in improving 

model accuracy. 

 

2.2. Feature extraction using Principle Components 

Analysis (PCA) 

 

PCA is a popular statistical method for pattern 

detection and dimensionality reduction. PCA is essential for 

improving the accuracy and efficiency of the synthesis 

planning process when used in the CASP process inside the 

AI framework. PCA is a technique that can be used to 

minimize the number of dimensions that raw feature data are 

represented in while preserving the highest level of variation 

in the original data. By eliminating all or some of the fewest 

principal components and substituting them with a lower-

dimensional projection. In this instance, one space is being 

transformed into another using orthogonal linear projection. 

An outline of the PCA method can be found. 

 

KY=XC     (1) 

 

The objective of CASP is to provide practical and ideal 

pathways for target chemical synthesis. AI models reduce 

data complexity while preserving critical information by 

using PCA to analyze and extract key characteristics from 

chemical reaction datasets. PCA helps to determine the most 

important variables and the connections between them by 

converting the input data into a lower-dimensional space. 

Including the proposed data matrix Pis the main elements of 

W with P≤Nis with〖 Z∈Q〗^(S×S). The crucial step 〖

C∈Q〗^(N×P)is therefore to locate the projection matrix. 

This can be done by solving a problem using singular value 

decomposition (SVD) for W, or by figuring out the 

eigenvectors of the covariance matrix of W. 

 

𝑋 = 𝑈Σ𝑉𝑇      (2) 

      

  

In the row and column dimensions of 𝑋, the matrices 

𝑈 ∈ ℚ𝑆×𝑆, Where𝑈 ∈ ℚ𝑆×𝑆, and 𝑉 ∈ ℚ𝑆×𝑆are orthogonal, 

and 𝛴 denotes single values as a diagonal matrix, 𝜆𝑚, for 

equation (3):  

 

𝑛 =  0,· · ·, 𝑁 − 1    (3) 

      

  

Not layers on the diagonal gradually. Projecting 𝐶 matrix 

created from the first 𝑃 columns of 𝑉 with equation (4):  

 

𝑉 = [𝑉1, … , 𝑉𝑁]     (4) 

 

Besides 

 

C=[C_1,…,〖 C〗_P ]        (5) 

The n_th correct specific route of X is denoted as V_n〖∈ Q

〗^(N×1),  

 

c_n=v_n     (6) 

 

Synthesis planning is made easier and more efficient by 

using AI to integrate PCA into CASP. Faster computing and 

chemical space exploration are made possible by the 

reduced-dimensional representation, which also helps the AI 

model to determine the viability of synthetic pathways. 

Furthermore, by concentrating on the most important 

characteristics, PCA lessens the negative effects of 

dimensionality and improves the generalization skills of AI 

models. All of the distinct values in Σ in (3) represent the 

dispersion measure of X along the major axes of the area 

that the rows of C cover. The measure of dispersion over the 

principal component of Xtprojection is becomesλ_m^2. 

Considered to be a decent proxy for variation in data is the 

quantity of information that a component contributes to the 

overall image. Compute the cumulative variation explained 

percentage between the primary components, which is one 

method. It is expected that equation (7):  

 

𝑅𝑐𝑒𝑣 =
∑ 𝜆𝑛

2𝑝
𝑛=1

∑ 𝜆𝑛
2𝑁

𝑛=1
     (7) 

 

The integration of PCA in AI-driven CASP advances 

computer-assisted synthesis planning, transforming it into a 

more capable, clever, and intelligent tool for drug discovery 

and organic chemistry. The findings indicate that over 90% 

of 𝑋′s overall variation or information can be preserved by 

only a few key components. In the study, they contrast the 

outcomes that come from various combinations of 

fundamental components. 

 

2.3. Classification of AI to the Process of Computer–

Assisted Synthesis Planning using Chaos Chemical 

Reaction Optimized Adaptive K-Nearest Neighbor (CCRO-

AKNN) 

 

The AI for CASP that combines CCRO and AKNN 

is known as CCRO-AKNN. This hybrid approach combines 

chaos-driven optimization with adaptive learning from 

nearest neighbors to enhance chemical space exploration. 

Because chaos theory and AI algorithms work well together, 

CCRO-AKNN is a powerful tool for creative and effective 

synthesis planning. It provides enhanced exploration skills 

and flexibility for finding the best synthetic paths across 

intricate chemical environments. 

 

2.3.1. Adaptive K-Nearest Neighbor (AKNN) 

 

CCRO-AKNN is used by AI in Computer-Assisted 

Synthesis Planning to improve decision-making. AKNN 

constantly modifies its learning parameters to accommodate 

the intricacies of chemical space. When determining an 

appropriate similarity measure for the frequent trajectories, 

they planned to use AKNN classification. It is important to 

take into account the varied lengths of the common 

trajectories while comparing the similarity of strings even if 

they are represented as numerical strings. An example of a 

trajectory in cellular space is 𝑊, which can be expressed as 

(𝐷1,  𝐷2, 𝐷𝑚)in terms of tactical cells, where 𝑛 is the number 

of cells and 𝐷𝑚 is the number of times of trajectory crosses 

the 𝑛𝑡ℎ cell. An 𝑛-dimensional vector accurately depicts the 

synthesis planning becomes more responsive when AI is 
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integrated with AKNN, effectively suggesting synthetic 

pathways based on the AKNN algorithm of adaptability. 

 

𝑊 = (𝐷1,  𝐷2, 𝐷𝑚)    (8) 

 

Each route in our scenario was represented as a 9-

dimensional vector on a CCRO-AKNN with (𝑛 =  9). 
 

𝑊 = (𝐷1, 𝐷2, 𝐷9)    (9) 

       

In vector space, they represented each of the frequent 

trajectories, and the similarity between the vectors for 

classification was determined using cosine similarity. 

CCRO-AKNN's flexible method enhances the precision and 

adaptability of AI-powered synthesis planning, making it 

easier to identify the most advantageous and varied routes 

for chemical synthesis. Algorithm 1 indicates AKNN 

procedure. This is the definition of cosine similarity between 

two frequent trajectories (𝑊𝐵and𝑊𝐴) expressed as vectors: 

 

𝑊𝐵 = (𝐷𝐵1, 𝐷𝐴2 , … . , 𝐷𝐵9)    (10) 

 

𝑊𝐴 = (𝐷𝐴1, 𝐷𝐴2, … . , 𝐷𝐴9)    (11) 

 

𝐷𝑇(𝑊𝐵 , 𝑊𝐴) =
∑ 𝐷𝐴𝑗𝐷𝐴𝑗

9
𝑗=1

√∑𝑗=1
9 𝐷𝐵𝑗

2 √∑𝑗=1
9 𝐷𝐴𝑗

2
   (12) 

 

Algorithm 1: AKNN 

 

Input: 

𝑤, 𝑙, 𝑡 // 𝑤: Instruction sets;𝑘:name; 𝑡: exemplar for 

categorization 

To the training data size of 𝑗 do: 

Calculate the distance𝑐(𝑤𝑗,𝑡) 

End for 

Choose the desired quantityclosest neighbors  

Elevate the order of the distances 

Among the top 𝑘 neighbors, count the instances of each 

label 

Output: The most common label𝑘, should be assigned to 𝑡. 
 

2.3.2. Chaos Chemical Reaction Optimization (CCRO) 

 

A revolutionary method in CASP is the combination 

of AI with Chaos CCRO. When combined with CCRO, AI 

uses chaos theory to maximize chemical space exploration 

for effective route planning. Through the use of chaos-driven 

algorithms to include stochastic aspects, CCRO-AKNN 

allows for dynamic and adaptable search tactics, tackling 

problems such as local optima. 

 

𝑦 = 𝑚𝑥 + 𝑏     (13) 

 

The chemical space exploration for efficient route planning 

has the following equation: 𝑦 is the dependent variable,𝑥 is 

the independent variable, 𝑚 is the slope, and 𝑏 is the 𝑦-

intercept. The combination improves CASP's performance 

and provides a solid way to traverse intricate chemical 

environments. Combining AI and CCRO-AKNN speeds up 

the process of identifying the best synthesis routes. This 

gives chemists a state-of-the-art tool for creating new, 

effective routes for the synthesis of chemical compounds, 

advancing the field of computer-assisted synthesis planning 

with creative and flexible optimization techniques. For 

CASP, this technique combines the concepts of AKNN and 

CCRO. The components listed above just need to be put 

together by the pseudo code provided in Algorithm 2 to 

program CCRO-AKNN. To make it easier to comprehend 

how the algorithm works. The population size, KE loss rate, 

molecular characteristics, buffer, starting, tuning parameters 

(αand β), and goal function (e) are among the important 

factors. These parameter values, however, depend on the 

specific issue. The certain parameters to get an ideal set of 

variables that optimize CCRO-AKNN performance for a 

given situation is obtained. 

 

Algorithm 2: CCRO-AKNN 

 

Input: The parameter values and the objective function 𝑒 

Initialization 

Choose a pop size, 𝐾𝐸 Diminished Rate, Molecoll, pause, 

first 𝐾𝐸, α and β 

Make the desired amount of molecules, Pop Size. 

While not meeting the stopping requirements do 

Produceaϵ[0,1] 
if a > molecoll then 

choose a molecule at random Nω 

if the disintegration standard (15) is met then 

Start the decomposition Process 

else 

Activate upon wallin' an efficient collision 

End if  

else 

choose a molecule at random Nω1 and Nω2 

If the disintegration standard (16) is met then 

Synthetic triggers 

else 

Intermolecular Trigger Ineffective Collision 

End if 

New minimal solution 

End while 

The last phase 

Provide the goal function value and the best solution that 

was discovered. 

 
3. Results and discussion 

 

The required procedures were developed in an 

environment that was compatible with Python 3.11.4. A 

Windows 11 laptop with an Intel i5 11th Gen CPU and 32 

GB of RAM was used to replicate the investigation of the 

suggested optimization options. CASP accuracy, recall, 

accuracy, f1-score, and precision are some of the metrics 

used for the CCRO-AKNN model to evaluate a model's 

predictive skills. They compared our suggested technique to 

other existing methods like deep convolutional generative 

adversarial networks (DCGAN) [18], Bidirectional 

Collaboration Network (BCNet) [19]. The performance of 

several approaches in a classification problem is contrasted 

in (Table 1). 

 

 



International Journal of Chemical and Biochemical Sciences (IJCBS), 25(15) (2024): 69-77 

 

Ganapathy et al., 2024     73 
 

 

 

 

 

Figure 1. Flow of this study 

 

 
Table 1. Values for Accuracy, Precision, Recall, F1- Score 

 

Methods Accuracy % Precision % Recall % F1-score % 

DCGAN [18] 81.1 82.3 79.3 80.7 

BCNet 

[19] 
98.24 95.53 95.21 95.30 

CCRO-AKNN [Proposed] 99.02 97.63 96.31 98.42 
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Figure 2.  Comparison of Accuracy 

 

 
 

Figure 3.  Comparison of Precision 
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Figure 4.  Comparison of Recall 

 

 
 

Figure 5. Comparison of F1- Score 
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3.1. Accuracy 

 

Chemical synthesis route prediction is improved by 

AI accuracy, which improves CASP. AI models examine 

reaction databases and suggest effective synthetic paths by 

using ML techniques and extensive chemical knowledge. 

This precision guarantees accurate and exact forecasts, 

saving time and money in organic chemistry and drug 

development. By using AI in CASP, researchers can create 

new compounds more quickly, which promotes scientific 

and medicinal innovation. It also speeds up the synthesis 

planning process. (Fig.2) show the accuracy of Chemical 

synthesis with route prediction. Although DCGAN reached 

81.1 of accuracy, the BCNet achieved 98.24; nonetheless, 

the suggested CCRO-AKNN approach produced a better 

99.02 accuracy. A specialized task analysis contrasted these 

strategies. 

 

3.2. Precision 

 

Precise prediction of ideal chemical reactions is a 

key component of AI precision in computer-aided synthesis 

planning. The system incorporates extensive chemical 

expertise, reaction databases, and ML algorithms to suggest 

effective paths for the synthesis of desired compounds. By 

reducing the number of experimental rounds and resource 

consumption, this accuracy guarantees accurate predictions. 

AI improves synthesis by analyzing a variety of chemical 

data, which helps chemists create efficient and practical 

routes for creating intricate molecular structures. The 

combination of chemical knowledge and computer power 

allows for the optimization of synthesis planning, which 

speeds up drug discovery and materials development 

methodically and effectively. (Fig.3) shows the precision of 

Chemical synthesis route prediction. When compared to 

more conventional approaches like DCGAN of 82.3 BCNet 

of 95.53, the suggested CCRO-AKNN algorithm performed 

far better for a precision of 97.63. 

 

3.3. Recall 

 

AI recall for CASP entails finding pertinent 

chemical reactions and information to help with creating 

synthetic routes for desired compounds. The technology 

helps chemists organize their synthesis more effectively and 

efficiently by retrieving prior successful reactions via the 

analysis of databases and learned patterns. This method uses 

machine learning to boost productivity and creativity in 

organic chemistry, making insightful recommendations and 

quickening the processes of material synthesis and drug 

development. (Fig.4) shows the Recall of Chemical 

synthesis route prediction. By overcoming comparable 

approaches like DCGAN of 79.3, BCNet of 95.21, the 

suggested CCRO-AKNN achieved a high recall of 96.31 

than other existing methods. 

 

3.4. F1-Score 

 

The F1-Score is an important performance statistic 

in the field of AI computer-assisted synthesis planning. The 

F1-Score, which is the harmonic mean of these indicators, 

guarantees a thorough assessment and is especially helpful 

for traversing the complex terrain of organic chemical 

processes. This parameter is crucial for maximizing the 

effectiveness and dependability of AI-driven synthesis 

planning systems, pointing scientists in the direction of more 

precise and practical chemical paths as they tackle the 

challenge of creating new chemicals. (Fig.5) shows the F1- 

Score of Chemical synthesis route prediction. The suggested 

CCRO-AKNN model outperformed 98.42 of the F1-score to 

DCGAN of 80.7, BCNet of 95.30, according to a 

comparative evaluation of classification techniques. 

 

4. Conclusions 

 

This study explores the integration of AI into 

Computer-Assisted Synthesis Planning, aiming to enhance 

the efficiency and precision of chemical route predictions for 

organic synthesis and drug discovery. The integration of 

CCRO-AKNN into CASP represents a significant 

advancement in chemical synthesis prediction. The proposed 

approach, evaluated against key metrics, demonstrates 

notable improvements over alternative methods. With an 

accuracy of 99.02, precision of 97.63, recall of 96.31, and an 

F1-score of 98.42, CCRO-AKNN outperforms other existing 

techniques such as DCGAN, BCNet. The precision in 

predicting chemical reactions, facilitated by AI and PCA-

driven feature extraction, showcases the effectiveness of 

CCRO-AKNN model in navigating complex chemical 

environments. This study contributes to the evolution of 

CASP, providing chemists with a sophisticated tool for 

efficient and innovative route planning. The promising 

results underscore the potential of AI-driven methodologies, 

particularly CCRO-AKNN, in advancing the field of 

chemical synthesis towards greater accuracy and 

productivity. Potential biases in AI models, difficulties in 

managing complicated pharmaceutical chemicals, and the 

need for human involvement in the synthesis planning 

process despite AI integration are some of the limitations. 

Future research will focus on improving AI-CASP models 

for more extensive chemical space exploration, resolving 

issues with intricate pharmaceutical molecules, and 

incorporating real-time experimental data to improve 

synthesis planning's precision and effectiveness. 

 

References 

 

[1] Y. Shen, J.E. Borowski, M.A. Hardy, R. Sarpong, 

A.G. Doyle, T. Cernak. (2021). Automation and 

computer-assisted planning for chemical 

synthesis. Nature Reviews Methods Primers. 1 (1) 

23. 

[2] F. Adams, M. Adriaens. (2020). The 

metamorphosis of analytical chemistry. Analytical 

and Bioanalytical Chemistry. 412 3525-3537. 

[3] J. Winarta, B. Shan, S.M. Mcintyre, L. Ye, C. 

Wang, J. Liu, B. Mu. (2019). A decade of UiO-66 

research: a historic review of dynamic structure, 

synthesis mechanisms, and characterization 

techniques of an archetypal metal–organic 

framework. Crystal Growth & Design. 20 (2) 1347-

1362. 

[4] F. Thams, A. Venzke, R. Eriksson, S. 

Chatzivasileiadis. (2019). Efficient database 

generation for data-driven security assessment of 



International Journal of Chemical and Biochemical Sciences (IJCBS), 25(15) (2024): 69-77 

 

Ganapathy et al., 2024     77 
 

power systems. IEEE Transactions on Power 

Systems. 35 (1) 30-41. 

[5] D. Gounden, N. Nombona, W.E. Van Zyl. (2020). 

Recent advances in phthalocyanines for chemical 

sensor, non-linear optics (NLO) and energy storage 

applications. Coordination Chemistry Reviews. 420 

213359. 

[6] R. Shibukawa, S. Ishida, K. Yoshizoe, K. Wasa, K. 

Takasu, Y. Okuno, K. Tsuda. (2020). CompRet: a 

comprehensive recommendation framework for 

chemical synthesis planning with algorithmic 

enumeration. Journal of cheminformatics. 12 (1) 1-

14. 

[7] R. Han, H. Yoon, G. Kim, H. Lee, Y. Lee. (2023). 

Revolutionizing medicinal chemistry: the 

application of artificial intelligence (AI) in early 

drug discovery. Pharmaceuticals. 16 (9) 1259. 

[8] L.E. Zetzsche, S. Chakrabarty, A.R. Narayan. 

(2022). The transformative power of biocatalysis in 

convergent synthesis. Journal of the American 

Chemical Society. 144 (12) 5214-5225. 

[9] M.E. Fortunato, C.W. Coley, B.C. Barnes, K.F. 

Jensen. (2020). Data augmentation and pretraining 

for template-based retrosynthetic prediction in 

computer-aided synthesis planning. Journal of 

chemical information and modeling. 60 (7) 3398-

3407. 

[10] K.K. Mak, M.R. Pichika. (2019). Artificial 

intelligence in drug development: present status and 

future prospects. Drug discovery today. 24 (3) 773-

780. 

[11] A. Thakkar, S. Johansson, K. Jorner, D. Buttar, J.L. 

Reymond, O. Engkvist. (2021). Artificial 

intelligence and automation in computer aided 

synthesis planning. Reaction chemistry & 

engineering. 6 (1) 27-51. 

[12] T.J. Struble, J.C. Alvarez, S.P. Brown, M. Chytil, J. 

Cisar, R.L. DesJarlais, K.F. Jensen. (2020). Current 

and future roles of artificial intelligence in 

medicinal chemistry synthesis. Journal of medicinal 

chemistry. 63 (16) 8667-8682. 

[13] A. Thakkar, T. Kogej, J.L. Reymond, O. Engkvist, 

E.J. Bjerrum. (2020). Datasets and their influence 

on the development of computer assisted synthesis 

planning tools in the pharmaceutical 

domain. Chemical science. 11 (1) 154-168. 

[14] C.W. Coley, D.A. Thomas III, J.A. Lummiss, J.N. 

Jaworski, C.P. Breen, V. Schultz, K.F. Jensen. 

(2019). A robotic platform for flow synthesis of 

organic compounds informed by AI 

planning. Science. 365 (6453) eaax1566. 

[15] W. Finnigan, L.J. Hepworth, S.L. Flitsch, N.J. 

Turner. (2021). RetroBioCat as a computer-aided 

synthesis planning tool for biocatalytic reactions 

and cascades. Nature catalysis. 4 (2) 98-104. 

[16] K. Sankaranarayanan, K.F. Jensen. (2023). 

Computer-assisted multistep chemoenzymatic 

retrosynthesis using a chemical synthesis 

planner. Chemical Science. 14 (23) 6467-6475. 

[17] P.G. Knoops, A. Papaioannou, A. Borghi, R.W. 

Breakey, A.T. Wilson, O. Jeelani, S. Schievano. 

(2019). A machine learning framework for 

automated diagnosis and computer-assisted 

planning in plastic and reconstructive 

surgery. Scientific reports. 9 (1) 13597. 

[18] Y.J. Kim, H.C. Cho, H.C. Cho. (2021). Deep 

learning-based computer-aided diagnosis system for 

gastroscopy image classification using synthetic 

data. Applied Sciences. 11 (2) 760. 

[19] C. Chola, A.Y. Muaad, M.B. Bin Heyat, J.B. 

Benifa, W.R. Naji, K. Hemachandran, T.S. Kim. 

(2022). BCNet: A Deep Learning Computer-Aided 

Diagnosis Framework for Human Peripheral Blood 

Cell Identification. Diagnostics. 12 (11) 2815. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


