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Abstract 

Thyroid cancer tends to have a relatively high survival rate and is often treatable if detected early. However, its 

prevalence and impact can vary by country due to factors like healthcare access, screening practices, and environmental factors. 

The ultrasound images can detect abnormal changes in the structure or size of the thyroid gland. This includes the presence of 

nodules or growths within the thyroid tissue. The present study presents a framework to classify thyroid cancer cells using 

ultrasound images into two main specified cell types using deep learning algorithms. The DDTI (The digital database of Thyroid 

Ultrasound Images) is used in this investigation. Depending on their internal composition, echogenicity, margins, calcifications, 

and TI-RADs, experts categorize the cells into two main distinct types which are benign and Malignant cells. Introducing a 

pipeline to improve diagnostic accuracy by experimenting keras application models and choosing the appropriate model result is 

the main contribution. The study reached the conclusion that deep learning could improve ultrasound screening classification 

results. The most suitable algorithms for this application appear to be VGG16, MobileNet, and InceptionResNetV2. The VGG16, 

MobileNet, and InceptionResNetV2 have the highest accuracy of 99.9%. These results support the proposed framework as a 

reliable diagnostic tool for thyroid cancer.  
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1. Introduction 

Cancer is the body's abnormal cells growing 

uncontrollably. Uncontrolled growth and division of cancer 

cells allow them to invade healthy tissues and organs and 

subsequently spread throughout the body [1]. The thyroid 

gland, resembling a butterfly in shape, plays a vital role in 

regulating key physiological functions such as body 

temperature, heart rate, and blood pressure in humans [2]. In 

recent decades, there has been a growing focus on this 

crucial organ due to the increasing detection of malignant 

thyroid nodules [3]. This trend has garnered global attention, 

with over 300 million individuals diagnosed with thyroid-

related conditions in 2018, and the numbers continue to rise 

today [4]. Notably, thyroid cancer, which is the most 

prevalent cancer in men aged 30 to 39 years, affects women 

three times more frequently and has a threefold higher 

diagnosis rate [5]. The thyroid gland consists of two primary 

types of cells: follicular cells and parafollicular cells, with 

follicular cells dominating the tissue. These cells are 

responsible for producing thyroid hormones that contain 

iodine. The Thyroid Imaging Reporting and Data System 

(TI-RADS) is a contemporary classification system 

designed to offer a comprehensive assessment, primarily 

focusing on malignancy categorization. This system 

includes the following classifications: TIRAD 1 (indicating 

normal findings, occasionally benign with no need for Fine 

Needle Aspiration or FNA), TIRAD 2 (suggesting a benign 

cluster), TIRAD 3 (likely benign), TIRAD 4 (indicating a 

suspicious abnormality), TIRAD 5 (signifying a high 

likelihood of malignancy), and TIRAD 6 (confirming 

proven malignancy).  
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Despite the continual increase in thyroid disease cases, 

diagnostic procedures in clinical settings have seen limited 

advancements since the 20th century [6]. The early detection 

and diagnosis of thyroid nodules can significantly impact 

lives by preventing cancer, ultimately leading to reduced 

rates of illness and mortality. Thyroid nodules are a 

common clinical finding, with a prevalence of 

approximately 19-68% in the general population, as reported 

in various studies. While the majority of thyroid nodules are 

benign, the ability to accurately distinguish between benign 

and malignant nodules is crucial for appropriate patient 

management and to reduce unnecessary surgical 

interventions [7-8]. Ultrasound imaging is a widely used 

modality for the evaluation of thyroid nodules due to its 

safety, accessibility, and ability to provide real-time, high-

resolution images. Thyroid ultrasound, an imaging method 

employing sound waves, is utilized to evaluate various 

aspects of thyroid health, including the size, location, and 

characteristics of the primary nodule. Additionally, it helps 

identify the presence of other thyroid nodules, such as those 

in the contralateral lobe, and assesses suspicious-looking 

lymph nodes.  It's important to note that the size of a nodule 

alone does not reliably indicate whether it is malignant or 

benign. However, the subjective interpretation of ultrasound 

images by radiologists can lead to variations in diagnostic 

accuracy [9]. Therefore, radiologists rely on ultrasound 

findings, coupled with a physical examination of the neck. 

Further diagnostic tests, such as thyroid CT, thyroid MRI, 

and tissue sampling, may be necessary to confirm a 

diagnosis. To address the challenge and improve the 

accuracy of thyroid nodule classification, Computer-Aided 

Diagnosis (CAD) systems have emerged as a promising 

solution. CAD systems are computer-based tools designed 

to assist radiologists and clinicians in the interpretation of 

medical images [10-11]. In the context of thyroid nodule 

assessment, CAD systems can provide an objective and 

standardized approach to nodule classification, aiding in the 

early detection of malignant nodules and reducing the rate of 

unnecessary biopsies or surgeries. For instance, the presence 

of thyroid nodules ranging from 1.0 to 1.9 cm in diameter on 

an ultrasound is often indicative of an elevated cancer risk. 

Deep learning techniques, specifically within the realm of 

Computer-Aided Diagnosis (CAD), have gained widespread 

application in clinical practice, spanning disease prediction, 

diagnosis, and treatment. In diagnosing conditions like 

hypothyroidism and hyperthyroidism, researchers have 

explored various statistical methods and machine learning 

algorithms, including k-nearest neighbor, linear discriminant 

analysis, and decision trees [12-15]. Notably, deep learning 

algorithms have been prominently employed in the 

classification of thyroid nodules from medical images. 

Researchers have dedicated substantial efforts to enhancing 

the accuracy of thyroid disease diagnosis through the 

analysis of ultrasound images. Results have shown that the 

accuracy of detecting malignant thyroid nodules using 

ultrasound images falls within the range of 72% to 92%, 

often surpassing the capabilities of less-experienced 

radiologists [16-20]. 

 

1.1. Type A: Papillary carcinoma  

Papillary carcinoma is the most common and typically 

less aggressive form of thyroid cancer, originating from 

follicular cells and often forming finger-like projections as 

shown in Figure 1 (a) [21].  

 

1.2. Type B: Follicular carcinoma 

Follicular carcinoma is a thyroid cancer type originating 

from follicular cells and is more aggressive than papillary 

carcinoma, with a greater tendency to spread as shown in 

Figure 1 (b) [22]. 

 

1.3. Type C: medullary carcinoma 

Medullary carcinoma is a less common and aggressive 

type of thyroid cancer originating from C cells. It can occur 

sporadically or hereditarily and is not linked to thyroid 

hormone production as shown in Figure 1 (c) [23]. 

 

1.4. Type D: anaplastic carcinoma  

Anaplastic carcinoma is an uncommon and highly 

aggressive thyroid cancer that arises from follicular or 

papillary thyroid cells, rapidly transforming into an 

undifferentiated and fast-growing form. It tends to spread 

quickly and is challenging to treat as shown in Figure 1 (d) 

[24]. 

 

2. Related work 

The study entailed a comprehensive exploration of 

modern approaches for early thyroid cancer diagnosis. It 

encompassed a thorough comparative analysis of these 

approaches, considering factors like the datasets, 

classification algorithms, performance metrics, and 

publication details, all presented in Table 1. This extensive 

comparison revealed a significant finding: none of the 

models employed in prior studies achieved a comparable 

level of accuracy to the proposed models. The models stand 

out not only for its ease of implementation but also for its 

exceptional accuracy, distinguishing it from existing 

approaches.  

 

3. Materials and methods 

In the investigation, Thyroid ultrasound images were 

sourced from the Digital Database Thyroid Image (DDTI), 

an openly accessible repository of such images, accessed via 

reference [46]. The dataset comprised a total of 260 cases 

and 350 thyroid ultrasound images in JPG format, with 61 

categorized as benign and 289 as malignant, spanning a 

wide age range from 21 to 92 years. Each image presented 

in 8-bit grayscale [47]. Figure 2 visually illustrates both a 

benign and a malignant image from the dataset for 

reference. These thyroid ultrasound images underwent a 

meticulous evaluation and categorization process carried out 

by experienced radiologists using the Thyroid Imaging 

Reporting and Data System (TIRADS). The TIRADS 

system classifies these images into seven distinct categories, 

each contingent on specific ultrasound features: (3) absence 

of suspicious features, (4a) presence of one suspicious 

feature, (4b) presence of two suspicious features, (4c) 

presence of three or four suspicious features, and (5) 

presence of five or more suspicious features [46]. In the 

study, the focus was on selecting images categorized as 

benign, specifically those classified as TIRADS 2 and 3. 

Conversely, Images were classified as malignant when 

falling into categories 4a, 4b, 4c, or 5, based on a 

categorization strategy established in prior research findings 

[16,48].  
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Radiologists assessed sonographic characteristics and 

measurements, such as composition, echogenicity, 

calcification, margin, and shape, using the TI-RADS 

guidelines proposed by Kwak et al., (2011) [50] as a 

reference. Nodule compositions were categorized into three 

primary groups: solid, cystic, or spongiform. A spongiform 

composition indicated that the nodule primarily consisted of 

small cystic spaces. Echogenicity was classified as 

hyperechoic, isoechoic, hypoechoic, or markedly 

hypoechoic by comparing nodule echoes to those from 

normal thyroid tissues. Marked hypo-echogenicity was 

identified when the nodule displayed lower echogenicity 

than the surrounding strap muscle. Microcalcification 

referred to tiny, punctate, or "dot-like" foci without posterior 

acoustic artifacts, each measuring less than 1 mm in 

diameter. On the other hand, calcifications were grouped 

into macrocalcification or triangular reverberation artifacts, 

with a diminishing width known as comet-tail artifacts. 

Margins were categorized based on their smoothness, with 

options including irregular, lobulated, ill-defined, halo, or 

displaying extrathyroidal extension (ETE). Lastly, Nodule 

shapes were classified as either wider or taller in comparison 

to their natural proportions [49]. Fine-tuning is a specific 

form of transfer learning that involves taking a pre-trained 

model and further training it on a task-specific dataset. 

Instead of training from scratch, fine-tuning modifies the top 

layers of the pre-trained model to adapt it to the target task 

while retaining the valuable features learned from the 

original data. This approach is particularly useful when 

working with limited data or for customizing pre-trained 

models for specific applications. In this study, A total of 

twenty-four fine-tuned models were employed with the 

primary goal of identifying the optimal model that could 

achieve the peak classification effectiveness. To accomplish 

this, a comprehensive comparison among diverse tested 

algorithms was conducted. These methodologies 

encompassed a range of well-known models, including 

ResNet (50, 50V2, 101, 101V2, 152, and 152V2), 

MobileNet (V1 and V2), Inception (V3 and ResNetV2), 

Xception, VGG (16), DenseNet (121, 169, and 201), NasNet 

(Mobile and Large), and EfficientNet (B0, B1, B2, B3, B4, 

B5, and B6). 

 

3.1. ResNet  

ResNet, short for Residual Networks, is a pivotal 

advancement in deep learning and convolutional neural 

networks (CNNs). It was introduced to overcome the 

problem of vanishing gradients in deep networks by 

introducing residual connections, allowing information to 

flow more effectively [51]. I extensively explored multiple 

ResNet models, including ResNet50, ResNet50V2, 

ResNet101, ResNet101V2, ResNet152, and ResNet152V2, 

among which ResNet101V2 exhibited the most promising 

outcomes. Enclosed is a Figure illustrating the architecture 

of this particularly successful model in Figure 3.  

 

3.2. MobileNet 

 MobileNet is a family of neural network architectures 

tailored for mobile and resource-limited devices. Their key 

feature is efficiency, achieved through depth-wise separable 

convolutions that reduce computational demands while 

maintaining accuracy. It striked a balance between speed 

and accuracy, thus serving as a valuable tool for deploying 

deep learning models on devices with limited computing 

power [53]. I delved into various MobileNet models—

MobileNet, and MobileNetV2. Among these, the 

performance of MobileNet stood out as the most impressive, 

showcasing superior results. Figure 4 included a visual 

representation detailing the architecture of this impactful 

model for reference. (A) The complete structure of 

MobileNet and (B) a detailed elucidation of the DS layer. 

 

3.3. Inception 

 Inception, also known as GoogleNet, is a pioneering 

deep neural network architecture. Inception modules employ 

parallel convolutional layers with different filter sizes to 

capture multi-scale features efficiently. Inception was 

crafted to tackle the challenges of deep neural networks, 

offering a balance between model depth and computational 

efficiency. This architecture's ability to reduce parameters 

while maintaining high accuracy has made it a crucial 

component in image classification [55]. I thoroughly 

examined several Inception models, including InceptionV3, 

and InceptionResNetV2. Among these variations, 

InceptionResNetV2 emerged as the standout performer, 

exhibiting exceptional results. Additionally, Figure 5 

incorporated a visual representation elucidating the 

architecture of this highly effective model for review. 

 

3.4. Xception 

 Xception is a neural network architecture that extends 

the Inception model by utilizing depth-wise separable 

convolutions. This innovative technique isolates spatial and 

channel-wise convolutions, resulting in a significant 

reduction in model parameters without compromising 

performance. Xception's strength lies in its efficient feature 

extraction, making it particularly well-suited for computer 

vision tasks like image classification [57]. Figure 6 included 

a graphical illustration that clarifies the structure of this 

exceptionally efficient model for examination.  

 

3.5. VGG 

 VGG, or Visual Geometry Group, is a widely 

recognized deep neural network architecture known for its 

straightforward and effective design. It distinguishes itself 

by employing a deep stack of 3x3 convolutional filters, 

resulting in a uniform and easy-to-understand structure. 

Although VGG models are relatively deep and parameter-

heavy compared to some alternatives, their simplicity has 

made them a pivotal benchmark in the realm of deep 

learning. VGG networks have demonstrated remarkable 

performance in image classification [59]. I employed the 

VGG16 model for my analysis, and Figure 7 serves as a 

graphical depiction elucidating its architectural layout. 

 

3.6. DenseNet 

 DenseNet, or Densely Connected Convolutional 

Networks, is an influential deep learning architecture 

distinguished by its dense interlayer connections. Unlike 

conventional convolutional neural networks (CNNs), 

DenseNet employs dense connections where each layer is 

directly connected to every subsequent layer. This dense 

connectivity promotes enhanced feature reuse, smoother 

gradient flow, and more compact model designs [61]. I 

extensively explored multiple DenseNet models—

DenseNet121, DenseNet169, and DenseNet201.  
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 Due to its superior performance compared to the other 

two models, DenseNet201 stands out notably, especially 

when trained with a batch size of 24. Figure 8 included 

architectural representations that depict this model's 

configuration. 

 

3.7. NasNet 

 NASNet, or Neural Architecture Search Network, is an 

automated deep learning architecture that employs 

reinforcement learning to autonomously design neural 

network structures. Unlike traditional manual design 

methods, NASNet uses a search algorithm to discover 

optimal architectures for specific tasks, reducing the need 

for human expertise in architecture crafting [63]. I delved 

into different NasNet models, encompassing NasNetMobile 

and NasNetLarge. NasNetLarge distinguishes itself 

significantly due to its better performance in comparison to 

the other model. Figure 9 provided architectural 

representations illustrating the configuration of this standout 

model. 

 

3.8. EfficientNet 

EfficientNet represents a family of convolutional neural 

network architectures celebrated for their exceptional 

performance-efficiency balance. Through a unique scaling 

technique that adjusts network width, depth, and resolution 

uniformly, EfficientNet optimizes model size and 

computational demands [65]. I thoroughly examined various 

EfficientNet models—EfficientNetB0, EfficientNetB1, 

EfficientNetB2, EfficientNetB3, EfficientNetB4, 

EfficientNetB5, EfficientNetB6, and EfficientNetB7. Given 

that all EfficientNet models yield identical results, Figure 10 

opted to utilize EfficientNetB0 as a representative example 

for showcasing the EfficientNet architecture (Figure 10). 

 

4. Evaluation metrics 

Key performance metrics of significant importance 

include precision, recall, sensitivity, specificity, and 

accuracy. To compute these evaluation metrics effectively, 

the analysis relies on four essential variables. Metrics such 

as true positives (TP), false positives (FP), true negatives 

(TN), and false negatives (FN) play a critical role in 

accurately evaluating the model's performance [67].  

 

4.1. Accuracy 

 Accuracy denotes the proportion of correctly identified 

cases among the total instances. 

Accuracy =
T P + T N

T P + T N + F N + F P
  (1) 

 

4.2. Precision 

Precision represents the fraction of accurately predicted 

positive results among all outcomes identified as positive. 

Precision =
T P

T P + F P 
  (2) 

 

4.3. Recall  

 Recall signifies the ratio of accurately predicted events 

to all the events that were anticipated. 

Recall =
T P

T P + F N
 (3) 

 

4.4. Sensitivity 

Sensitivity measures the average fraction of true positives 

that are accurately recognized among all actual positives. 

Sensitivity =
T P

T P + F N 
 (4) 

 

4.5. Specificity 

Specificity quantifies the proportion of correctly identified 

negative values among all actual negatives. 

Specificity =
T N

 T N + F P
 (5) 

 

5. Results and discussion  

The dataset was divided into two parts, with 80% 

allocated for training and 20% for testing purposes. The 

training and testing phases were executed using Google 

Colab as the computing environment. The experiments were 

carried out specifically on the DDTI dataset, and their 

outcomes are elaborated upon in the subsequent discussions. 

In this section, the outcomes of the experiments are outlined. 

The efficiency of the network is significantly influenced by 

the learning rate, batch size, and dimensions of the input 

image. These factors play substantial roles in determining 

the network's performance.  

 

 

Figure 1: Ultrasound images for different types of thyroid carcinoma: (a) Papillary carcinoma, (b) Follicular carcinoma, (c) 

Medullary carcinoma, (d) Anaplastic carcinoma. 
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Table 1: A comparison of the relevant research from the perspectives of image modality, classification methods, outcomes, and 

publishing information 

Author, Year Image Modalities Method Sensitivity Specificity Accuracy 

L.C. Long 2023 [25] Ultrasound images CascadeMaskR-CNN 93% 95% 94% 

X.Zhang 2022 [26] 
Ultrasound imaging and 

computed tomography (CT) 
Xception neural network 94% — 98% 

Y.J.Lin 2021 [27] Whole slide imaging VGG16 94% — 99% 

A.Naglah 2021 [28] MRI Multi-input CNN 69% 97% 87% 

A.Naglah 2021 [29] MRI Multi-input CNN 82% - 88% 

Y.Liu 2021 [30] Ultrasound images ThyNet 94% 81% — 

S.Peng 2021 [31] Ultrasound images ThyNet 94% 81% 89% 

W.K.Chan 2021 [32] Ultrasound images ResNet101 72.5% 81.4% 77.6% 

J.H.Lee 2020 [33] 
CT images 

 

Xception 

 
80.2% 83% 82.5% 

M.S.Kavetha 2020 [34] 
Post-ablation whole-body 

planar scans (RxWBSs) 
MFDN — 85% 93% 

V.Kumor 2020 [35] Sonographic images 
Multiprong CNN 

(MPCNN) 
88% 73% — 

C.Sun 2020 [36] Ultrasound images SVM + CNN 96.4% 83.1% 92.5% 

Y.Wang 2020 [37] Ultrasound images VGG16 63% 80% 74% 

S.W.Kwon 2020 [38] Ultrasound images VGG16 70% 92% — 

F.Abdolali 2020 [39] Ultrasound images Mask R-CNN 79% — — 

Y. Lu 2020 [40] Ultrasound images CascadeMaskR-CNN 93% 95% 94% 

J.H.Lee 2019 [41] CT images VGG19 89% 94% 92% 

X.Li 2019 [42] Sonographic images 
Deep convolutional neural 

network (DCCN) 
93% 86% 89% 

Q.Guan 2019 [43] Ultrasound images Inception v3 93.3% 87.4% ~95% 

P. Tsou 2019 [44] Histopathology images Google inception v3 — — 95% 

H.Li 2018 [45] Ultrasound images R-CNN 81% — — 

 

 
 

Figure 2: TIRADS 2 has ill-defined margins and micro-calcification on the left; TIRADS 5 on the right has well-defined margins 

and micro-calcification and is labelled "malignant." 
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Figure 3: ResNet101V2 architecture diagram [52]. 

 

 

 

 

Figure 4: MobileNet architecture diagram [54].  
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Figure 5: InceptionResNetV2 architecture schematic diagram [56]. 

 

 

 

 

 

Figure 6: Xception deep CNN architecture diagram [58].  
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Figure 7: Vgg16 neural network architecture diagram [60].  

 

 

 

 

 

Figure 8: DenseNet201 layered architecture diagram [62].  
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Figure 9: NasNetLarge architecture diagram [64]. 

 

Table 2: Comparison of various Fine-tuned models in binary classification task using batch size of 32. 

Model Name Accuracy precision recall sensitivity Specificity 

ResNet50 82.3% 82.6% 82.6% 95.1% 95.1% 

ResNet50V2 94.1% 94.7% 94.7% 99.9% 99.9% 

ResNet101 82.3% 82.5% 82.5% 93.4% 93.4% 

ResNet101V2 97% 94% 94% 99.7% 99.7% 

ResNet152 82.3% 82.5% 82.5% 93.4% 93.4% 

ResNet152V2 91.1% 91.1% 91.1% 99.9% 99.9% 

MobileNet 99.9% 99.7% 99.7% 99.7% 99.7% 

MobileNetV2 94.1% 94.1% 94.1% 99.9% 99.9% 

InceptionV3 82.3% 82.5% 82.5% 96.1% 96.1% 

InceptionResNetV2 99.9% 99.9% 99.9% 99.9% 99.9% 

Xception 91.1% 92.5% 92.5% 99.2% 99.2% 

Vgg16 99.9% 99.9% 99.9% 99.9% 99.9% 

DenseNet121 82.3% 82.5% 82.5% 97.9% 97.9% 

DenseNet169 85.2% 85.6% 85.6% 96.6% 96.6% 

DenseNet201 85.2% 84.1% 84.1% 97.3% 97.3% 

NasNetMobile 82.3% 82.5% 82.5% 95.3% 95.3% 

NasNetLarge 85.2% 84.3% 84.3% 96.3% 96.3% 

EfficientNetB0 82.3% 82.5% 82.5% 82.5% 82.5% 

EfficientNetB1 82.3% 82.5% 82.5% 82.5% 82.5% 

EfficientNetB2 82.3% 82.5% 82.5% 91.1% 91.1% 

EfficientNetB3 82.3% 82.5% 82.5% 89.5% 89.5% 

EfficientNetB4 82.3% 82.5% 82.5% 85.8% 85.8% 

EfficientNetB5 82.3% 82.5% 82.5% 90.3% 90.3% 

EfficientNetB6 82.3% 82.5% 82.5% 92.7% 92.7% 
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Figure 10: EfficientNetB0 architecture diagram [66].  

 

Table 3: Comparing different Fine-tuned models in binary classification task employing batch size of 24. 

Model Name Accuracy Precision Recall Sensitivity Specificity 

ResNet50 82.3% 82.5% 82.5% 96.1% 96.1% 

ResNet50V2 94.1% 94.7% 94.7% 99.7% 99.7% 

ResNet101 82.3% 82.5% 82.5% 93.4% 93.4% 

ResNet101V2 91.1% 91.9% 91.9% 98.9% 98.9% 

ResNet152 82.3% 82.5% 82.5% 95% 95% 

ResNet152V2 85.2% 89.3% 89.3% 99.2% 99.2% 

MobileNet 99.7% 99.7% 99.7% 99.7% 99.7% 

MobileNetV2 91.1% 92.7% 92.7% 99.9% 99.9% 

InceptionV3 82.3% 82.7% 82.7% 95.2% 95.2% 

InceptionResNetV2 94.1% 96% 96% 99.7% 99.7% 

Xception 94.1% 94.2% 94.2% 99.5% 99.5% 

Vgg16 99.9% 99.7% 99.7% 99.9% 99.9% 

DenseNet121 82.3% 82.5% 82.5% 97.9% 97.9% 

DenseNet169 82.3% 85.6% 85.6% 96.6% 96.6% 

DenseNet201 85.2% 84.1% 84.1% 98.1% 98.1% 

NasNetMobile 85.2% 82.8% 82.8% 95.5% 95.5% 

NasNetLarge 85.2% 84.6% 84.6% 96.8% 96.8% 

EfficientNetB0 82.3% 82.5% 82.5% 89% 89% 

EfficientNetB1 82.3% 82.5% 82.5% 82.5% 82.5% 

EfficientNetB2 82.3% 82.5% 82.5% 85.6% 85.6% 

EfficientNetB3 82.3% 82.5% 82.5% 90.1% 90.1% 

EfficientNetB4 82.3% 82.5% 82.5% 85.2% 85.2% 

EfficientNetB5 82.3% 82.5% 82.5% 88.2% 88.2% 

EfficientNetB6 82.3% 82.5% 82.5% 90.8% 90.8% 
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Differences in classification sensitivity, specificity, 

precision, recall, and accuracy were observed across various 

batch sizes while maintaining a constant split ratio, image 

size, number of epochs, learning rate, and optimizer (20%–

80%, 224 × 224, 400, 0.0001, and Adam, respectively) for 

the DDTI dataset. Notably, the most optimal classification 

performance was achieved specifically when utilizing a 

batch size of 32. Results are summarized in Table 2 and 

Table 3. A comprehensive comparison of twenty-four 

alternative models revealed that Vgg16, MobileNet, and 

inceptionresnetv2 models consistently delivered the most 

favorable outcomes across various metrics using batch size 

of 32. These advancements in deep learning have spurred 

the creation and evaluation of sophisticated models 

specifically for identifying malignant thyroid nodules. In 

response, a versatile framework was devised, leveraging 

CNN architecture and the aforementioned twenty-four 

models. This study aimed to address the challenge of early 

thyroid cancer detection using thyroid ultrasound images. 

For this purpose, a Convolutional Neural Network model 

employing transfer learning and fine-tuning with pretrained 

models was employed to distinguish between malignant and 

benign images. The experiment's effectiveness was gauged 

through accuracy, precision, recall, sensitivity, and 

specificity metrics. Notably, Vgg16, MobileNet, and 

inceptionresnetv2 models, employing Transfer Learning for 

accelerated learning, achieved an outstanding recognition 

accuracy of 0.999. The results, delineated in Table 2 for a 

batch size of 32 and Table 3 for a batch size of 24, were 

obtained utilizing the adam optimizer across 400 epochs. 

 

 

6. Conclusions 

Diagnosing the severity of thyroid cancer with 

exceptional accuracy represents a formidable task in current 

biomedical research. This study addresses this challenge by 

introducing a deep learning-based approach designed to 

effectively detect thyroid diseases using a dataset 

comprising 350 samples categorized into six TIRAD 

(Thyroid Imaging Reporting and Data System) classes but 

with binary target classification. To achieve the objective, 

Multiple deep learning algorithms, including ResNet, 

MobileNet, Inception, Xception, DenseNet, NasNet, and 

EfficientNet, were extensively explored and evaluated. This 

was followed by a comprehensive performance comparison 

of these algorithms. In the evaluation of models, VGG16, 

MobileNet, and InceptionResNetV2 demonstrated 

exceptional performance, achieving accuracy rates of 

99.9%, respectively, along with precision scores of 99.9% 

but MobileNet has precision score 99.7%. Following 

closely, ResNet101V2 secured the second position with an 

accuracy of 97% and a precision of 94%. These evaluations 

encompassed both validation and testing phases. Future 

research endeavors will involve the implementation of more 

sophisticated machine learning (ML) and deep learning 

(DL) algorithms. These algorithms will be applied to diverse 

datasets, including both statistical data and medical images. 

The primary aim is to enhance the efficiency and 

effectiveness of thyroid cancer disease prediction and 

diagnosis, particularly in the early stages of detection. 

 

 

 

 

References  

 

[1] K. P. Win, Y. Kitjaidure, K. Hamamoto, T. Myo 

Aung. (2020). Computer-assisted screening for 

cervical cancer using digital image processing of 

pap smear images. Applied Sciences. 10 (5): 

e1800.  

[2] M. D. Bethesda. (2018). SEER Cancer Stat Facts 

Thyroid Cancer. National Cancer Institute 

(accessed on 10 May 2021).  

[3] J. Kim, J. E. Gosnell, S. A. Roman. (2020). 

Geographic influences in the global rise of thyroid 

cancer. Nature Reviews Endocrinology. 16 (1): 

e17-e29. 

[4] Y. Liu, Y. Xu, X. Meng, X. Wang, T. Bai. (2020). 

A study on the auxiliary diagnosis of thyroid 

disease images based on multiple dimensional deep 

learning algorithms. Current Medical Imaging. 16 

(3): e199-e205. 

[5] R. M. Feng, Y. N. Zong, S. M. Cao, R. H. Xu. 

(2019). Current cancer situation in China: good or 

bad news from the 2018 Global Cancer Statistics? 

Cancer communications. 39 (1): e1-e12. 

[6] D. A. Watters, A. T. Ahuja, R. M. Evans, W. 

Chick, W. W. King, C. Metreweli, A. K. Li. 

(1992). Role of ultrasound in the management of 

thyroid nodules. The American journal of 

surgery. 164 (6): e654-e657. 

[7] Y. Yao, X. Chen, S. Wu, L. Guo, H. Zhang, Q. 

Zhu, J. Tang, F. Luan, Y. Zhao, F. Lv, Y. He. 

(2018). Thyroid nodules in centenarians: 

prevalence and relationship to lifestyle 

characteristics and dietary habits. Clinical 

interventions in aging. 1 (1): e515-e522. 

[8] H. J. Tae, D. J. Lim, K. H. Baek, W. C. Park, Y. S. 

Lee, J. E. Choi, J. M. Lee, M. I. Kang, B. Y. Cha, 

H. Y. Son, K. W. Lee, S. K. Kang. (2007). 

Diagnostic value of ultrasonography to distinguish 

between benign and malignant lesions in the 

management of thyroid nodules. Thyroid. 17 (5): 

e461-e466. 

[9] A. S. McQueen, K. S. Bhatia. (2015). Thyroid 

nodule ultrasound: technical advances and future 

horizons. Insights into imaging. 6 (2): e173-e188. 

[10] A. Prochazka, S. Gulati, S. Holinka, D. Smutek. 

(2019). Classification of thyroid nodules in 

ultrasound images using direction-independent 

features extracted by two-threshold binary 

decomposition. Technology in cancer research & 

treatment. 18 (1): e1533033819830748. 

[11] Y. Mokli, J. Pfaff, D. P. Dos Santos, C. Herweh, S. 

Nagel. (2019). Computer-aided imaging analysis in 

acute ischemic stroke–background and clinical 

applications. Neurological Research and Practice. 1 

(1): e1-e13. 

[12] N. Chambara, S. Y. Liu, X. Lo, M. Ying. (2021). 

Diagnostic performance evaluation of different TI-

RADS using ultrasound computer-aided diagnosis 

of thyroid nodules: An experience with adjusted 

settings. PloS one. 16 (1): e0245617. 

 

 



IJCBS, 24(12) (2023): 455--468 

 

Nasr et al., 2023     466 
 

[13] W. Ahmad, A. Ahmad, C. Lu, B. A. Khoso, L. 

Huang. (2018). A novel hybrid decision support 

system for thyroid disease forecasting. Soft 

Computing. 22 (1): e5377-e5383. 

[14] G. R. Banu. (2016). Predicting thyroid disease 

using linear discriminant analysis (LDA) data 

mining technique. Communications on Applied 

Electronics (CAE). 4 (1): e4-e6. 

[15] G. R. Banu. (2016). A Role of decision Tree 

classification data Mining Technique in Diagnosing 

Thyroid disease. International Journal of Computer 

Sciences and Engineering. 4 (11): e64-e70. 

[16] D. T. Nguyen, J. K. Kang, T. D. Pham, G. 

Batchuluun, K. R. Park. (2020). Ultrasound image-

based diagnosis of malignant thyroid nodule using 

artificial intelligence. Sensors. 20 (7): e1822. 

[17] Y. Chang, A. K. Paul, N. Kim, J. H. Baek, Y. J. 

Choi, E. J. Ha, K. D. Lee, H. S. Lee, D. Shin, N. 

Kim. (2016). Computer‐aided diagnosis for 

classifying benign versus malignant thyroid 

nodules based on ultrasound images: a comparison 

with radiologist‐based assessments. Medical 

physics. 43 (1): e554-e567. 

[18] J. Ma, F. Wu, J. Zhu, D. Xu, D. Kong. (2017). A 

pre-trained convolutional neural network-based 

method for thyroid nodule 

diagnosis. Ultrasonics. 73 (1): e221-e230. 

[19] S. Y. Ko, J. H. Lee, J. H. Yoon, H. Na, E. Hong, K. 

Han, I. Jung, E. K. Kim, H. J. Moon, V. Y. Park, E. 

Lee, J. Y. Kwak. (2019). Deep convolutional 

neural network for the diagnosis of thyroid nodules 

on ultrasound. Head & neck. 41 (4): e885-e891. 

[20] J. Xia, H. Chen, Q. Li, M. Zhou, L. Chen, Z. Cai, 

H. Zhou. (2017). Ultrasound-based differentiation 

of malignant and benign thyroid Nodules: An 

extreme learning machine approach. Computer 

methods and programs in biomedicine. 147 (1): 

e37-e49. 

[21] R. D. Chernock, I. S. Hagemann. (2015). 

Molecular pathology of hereditary and sporadic 

medullary thyroid carcinomas. American journal of 

clinical pathology. 143 (6): e768-e777.  

[22] C. E. Silver, R. P. Owen, J. P. Rodrigo, A. Rinaldo, 

K. O. Devaney, A. Ferlito. (2011). Aggressive 

variants of papillary thyroid carcinoma. Head & 

neck. 33 (7): e1052-e1059. 

[23] H. Chen, R. S. Sippel, M. S. O'Dorisio, A. I. Vinik, 

R. V. Lloyd, K. Pacak. (2010). The North 

American Neuroendocrine Tumor Society 

consensus guideline for the diagnosis and 

management of neuroendocrine tumors: 

pheochromocytoma, paraganglioma, and medullary 

thyroid cancer. Pancreas. 39 (6): e775-e783. 

[24] S. Yamashita, V. Saenko. (2007). Mechanisms of 

disease: molecular genetics of childhood thyroid 

cancers. Nature clinical practice Endocrinology & 

metabolism. 3 (5): e422-e429. 

[25] L. C. Long, Y. Bui Hoang, N. L. Trung, B. T. 

Dung, T. T. Ha, L. V. Nguyen. (2023, October). A 

Review in Deep Learning-Based Thyroid Cancer 

Detection Techniques Using Ultrasound Images. 

In International Conference on Intelligence of 

Things (pp. 15-25). Cham: Springer Nature 

Switzerland. 

[26] X. Zhang, V. C. Lee, J. Rong, F. Liu, H. Kong. 

(2022). Multi-channel convolutional neural 

network architectures for thyroid cancer 

detection. PLoS One. 17 (1): e0262128.  

[27] Y. J. Lin, T. K. Chao, M. A. Khalil, Y. C. Lee, D. 

Z. Hong, J. J. Wu, C. W. Wang. (2021). Deep 

learning fast screening approach on cytological 

whole slides for thyroid cancer 

diagnosis. Cancers. 13 (15): e3891.  

[28] A. Naglah, F. Khalifa, R. Khaled, A. A. K. Abdel 

Razek, M. Ghazal, G. Giridharan, A. El-Baz. 

(2021). Novel MRI-based CAD system for early 

detection of thyroid cancer using multi-input 

CNN. Sensors. 21 (11): e3878. 

[29] A. Naglah, F. Khalifa, R. Khaled, A. El-Baz. 

(2021). Thyroid cancer computer-aided diagnosis 

system using MRI-based multi-input CNN model. 

In 2021 IEEE 18th International Symposium on 

Biomedical Imaging (ISBI) (pp. 1691-1694). IEEE. 

[30] Y. Liu, J. Liang, S. Peng, W. Wang, H. Xiao. 

(2021). A deep-learning model to assist thyroid 

nodule diagnosis and management–Authors' 

reply. The Lancet Digital Health. 3 (7): e411-e412. 

[31] S. Peng, Y. Liu, W. Lv, L. Liu, Q. Zhou, H. Yang, 

J. Ren, G. Liu, X. Wang, X. Zhang,Q. Du, H. Xiao. 

(2021). Deep learning-based artificial intelligence 

model to assist thyroid nodule diagnosis and 

management: a multi-center diagnostic study. The 

Lancet Digital Health. 3 (4): e250-e259. 

[32] W. K. Chan, J. H. Sun, M. J. Liou, Y. R. Li, W. Y. 

Chou, F. H. Liu, S. T. Chen, S. J. Peng. (2021). 

Using deep convolutional neural networks for 

enhanced ultrasonographic image diagnosis of 

differentiated thyroid cancer. Biomedicines. 9 (12): 

e1771. 

[33] J. H. Lee, E. J. Ha, J. H. Kim. (2019). Application 

of deep learning to the diagnosis of cervical lymph 

node metastasis from thyroid cancer with 

CT. European radiology. 29 (1): e5452-e5457. 

[34] M. Kavitha, C. H. Lee, K. Shibudas, T. Kurita, B. 

C. Ahn. (2020). Deep learning enables automated 

localization of the metastatic lymph node for 

thyroid cancer on 131I post-ablation whole-body 

planar scans. Scientific reports. 10 (1): e7738. 

[35] V. Kumar, J. Webb, A. Gregory, D. D. Meixner, J. 

M. Knudsen, M. Callstrom, M. Fatemi, A. Alizad. 

(2020). Automated segmentation of thyroid nodule, 

gland, and cystic components from ultrasound 

images using deep learning. Ieee Access. 8 (1): 

e63482-e63496. 

[36] C. Sun, Y. Zhang, Q. Chang, T. Liu, S. Zhang, X. 

Wang, L. Niu. (2020). Evaluation of a deep 

learning‐based computer‐aided diagnosis system 

for distinguishing benign from malignant thyroid 

nodules in ultrasound images. Medical Physics. 47 

(9): e3952-e3960. 

[37] Y. Wang, W. Yue, X. Li, S. Liu, L. Guo, H. Xu, H. 

Zhang, G. Yang. (2020). Comparison study of 

radiomics and deep learning-based methods for 

thyroid nodules classification using ultrasound 

images. Ieee Access. 8 (1): e52010-e52017.  



IJCBS, 24(12) (2023): 455--468 

 

Nasr et al., 2023     467 
 

[38] S. W. Kwon, I. J. Choi, J. Y. Kang, W. I. Jang, G. 

H. Lee, M. C. Lee. (2020). Ultrasonographic 

thyroid nodule classification using a deep 

convolutional neural network with surgical 

pathology. Journal of digital imaging. 33 (1): 

e1202-e1208. 

[39] F. Abdolali, J. Kapur, J. L. Jaremko, M. Noga, A. 

R. Hareendranathan, K. Punithakumar. (2020). 

Automated thyroid nodule detection from 

ultrasound imaging using deep convolutional 

neural networks. Computers in Biology and 

Medicine. 122 (1): e103871.  

[40] F. Abdolali, J. Kapur, J. L. Jaremko, M. Noga, A. 

R. Hareendranathan, K. Punithakumar. (2020). 

Automated thyroid nodule detection from 

ultrasound imaging using deep convolutional 

neural networks. Computers in Biology and 

Medicine. 122 (1): e103871. 

[41] J. H. Lee, E. J. Ha, J. H. Kim. (2019). Application 

of deep learning to the diagnosis of cervical lymph 

node metastasis from thyroid cancer with 

CT. European radiology. 29 (1): e5452-e5457. 

[42] X. Li, S. Zhang, Q. Zhang, X. Wei, Y. Pan, J. 

Zhao, X. Xin, C. Qin, X. Wang, J. Li, K. Chen. 

(2019). Diagnosis of thyroid cancer using deep 

convolutional neural network models applied to 

sonographic images: a retrospective, multicohort, 

diagnostic study. The Lancet Oncology. 20 (2): 

e193-e201. 

[43] Q. Guan, Y. Wang, J. Du, Y. Qin, H. Lu, J. Xiang, 

F. Wang. (2019). Deep learning-based 

classification of ultrasound images for thyroid 

nodules: a large scale of pilot study. Annals of 

translational medicine. 7 (7). 

[44] P. Tsou, C. J. Wu. (2019). Mapping driver 

mutations to histopathological subtypes in papillary 

thyroid carcinoma: applying a deep convolutional 

neural network. Journal of clinical medicine. 8 

(10): e1675. 

[45] H. Li, J. Weng, Y. Shi, W. Gu, Y. Mao, Y. Wang, 

W. Liu, J. Zhang. (2018). An improved deep 

learning approach for detection of thyroid papillary 

cancer in ultrasound images. Scientific reports. 8 

(1): e6600. 

[46] L. Pedraza, C. Vargas, F. Narváez, O. Durán, E. 

Muñoz, E. Romero. (2015, January). An open 

access thyroid ultrasound image database. In 10th 

International symposium on medical information 

processing and analysis. SPIE. 9287 (1): e188-

e193). 

[47] https://www.kaggle.com/datasets/dasmehdixtr/ddti-

thyroid-ultrasound-images/data 

[48] K. V. Sai Sundar, K. T. Rajamani, S. Siva Sankara 

Sai. (2019). Exploring image classification of 

thyroid ultrasound images using deep learning. 

In Proceedings of the International Conference on 

ISMAC in Computational Vision and Bio-

Engineering 2018 (ISMAC-CVB) (pp. 1635-1641). 

Springer International Publishing. 

[49] D. W. Kim, E. J. Lee, H. S. In, S. J. Kim. (2010). 

Sonographic differentiation of partially cystic 

thyroid nodules: a prospective study. American 

journal of neuroradiology. 31 (10): e1961-e1966. 

[50] J. Y. Kwak, K. H. Han, J. H. Yoon, H. J. Moon, E. 

J. Son, S. H. Park, H. K. Jung, J. S. Choi, B. M. 

Kim, E. K. Kim. (2011). Thyroid imaging reporting 

and data system for US features of nodules: a step 

in establishing better stratification of cancer 

risk. Radiology. 260 (3): e892-e899. 

[51] K. He, X. Zhang, S. Ren, J. Sun. (2016). Deep 

residual learning for image recognition. 

In Proceedings of the IEEE conference on 

computer vision and pattern recognition (pp. 770-

778). 

[52] M. Bilal, M. Maqsood, S. Yasmin, N. U. Hasan, S. 

Rho. (2022). A transfer learning-based efficient 

spatiotemporal human action recognition 

framework for long and overlapping action 

classes. The Journal of Supercomputing. 78 (2): 

e2873-e2908. 

[53] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, 

W. Wang, T. Weyand, H. Adam. (2017). 

Mobilenets: Efficient convolutional neural 

networks for mobile vision applications. arXiv 

preprint arXiv. 1704 (4): e4861. 

[54] S. Phiphiphatphaisit, O. Surinta. (2020). Food 

image classification with improved MobileNet 

architecture and data augmentation. In Proceedings 

of the 3rd International Conference on Information 

Science and Systems. 1 (1): e51-e56. 

[55] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, 

D. Anguelov, A. Rabinovich. (2015). Going deeper 

with convolutions. In Proceedings of the IEEE 

conference on computer vision and pattern 

recognition. 1 (1): e1-e9. 

[56] https://blog.research.google/2016/08/improving-

inception-and-image.html?m=1 

[57] F. Chollet. (2017). Xception: Deep learning with 

depthwise separable convolutions. In Proceedings 

of the IEEE conference on computer vision and 

pattern recognition. 1 (1): e1251-e1258. 

[58] K. Srinivasan, L. Garg, D. Datta, A. A. Alaboudi, 

N. Z. Jhanjhi, R. Agarwal, A. G. Thomas. (2021). 

Performance comparison of deep cnn models for 

detecting driver’s distraction. CMC-Computers, 

Materials & Continua. 68 (3): e4109-e4124. 

[59] K. Simonyan, A. Zisserman. (2014). Very deep 

convolutional networks for large-scale image 

recognition. arXiv preprint arXiv:14 (09): e1556. 

[60] M. Loukadakis, J. Cano, M. O’Boyle. (2018). 

Accelerating deep neural networks on low power 

heterogeneous architectures. 

[61] G. Huang, Z. Liu, L. Van Der Maaten, K. Q. 

Weinberger. (2017). Densely connected 

convolutional networks. In Proceedings of the 

IEEE conference on computer vision and pattern 

recognition. 3 (1): e4700-e4708.  

[62] A. Jaiswal, N. Gianchandani, D. Singh, V. Kumar, 

M. Kaur. (2021). Classification of the COVID-19 

infected patients using DenseNet201 based deep 

transfer learning. Journal of Biomolecular Structure 

and Dynamics. 39 (15): e5682-e5689. 

 

 

 



IJCBS, 24(12) (2023): 455--468 

 

Nasr et al., 2023     468 
 

[63] B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le. 

(2018). Learning transferable architectures for 

scalable image recognition. In Proceedings of the 

IEEE conference on computer vision and pattern 

recognition. 1 (3): e8697-e8710.  

[64] S. Albahli, W. Albattah. (2020). Detection of 

coronavirus disease from X-ray images using deep 

learning and transfer learning algorithms. Journal 

of X-ray Science and Technology. 28 (5): e841-

e850. 

[65] M. Tan, Q. Le. (2019). Efficient net: Rethinking 

model scaling for convolutional neural networks. 

In International conference on machine learning. 

PMLR. 1 (1): e6105-e6114).  

[66] T. Ahmed, N. H. N. Sabab. (2022). Classification 

and understanding of cloud structures via satellite 

images with Efficient UNet. SN Computer 

Science. 3 (1): e1-e11. 

[67] M. M. El Sherbiny, E. Abdelhalim, H. E. D. 

Mostafa, M. M. El-Seddik. (2023). Classification 

of chronic kidney disease based on machine 

learning techniques. Indonesian Journal of 

Electrical Engineering and Computer Science. 32 

(2): e945-e955. 

 


