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Abstract 

The synthesis of molecules involves integrating atoms to produce compounds. Molecular properties are determined by 

structure and bonding, which influence physical and chemical features, determine reactivity, and establish functioning in various 

kinds of applications. Molecular synthesis provides problems in terms of accuracy, efficiency, and environmental effect, which 

affect qualities including stability, toxicity, as well as reactivity. In this research, we proposed an innovative technique of hybrid 

gradient-based optimization with a multi-layer recurrent neural network (HGO-MLRNN) for predicting the molecular property 

using deep learning (DL). To begin with, Drug Bank and CHEMBL datasets were collected for this study. In addition, we utilize 

the min-max normalization for data pre-processing, and Principal component analysis (PCA) is employed for feature extraction. 

As a result, to examine the efficiency of molecule property prediction, we leverage metrics like mean squared error (MSE), root 

mean square error (RMSE), and mean absolute error (MAE) for existing and proposed methods. Our proposed HGO-MLRNN 

method attains MSE (0.0201), RMSE (0.1231), and MAE (0.0612) which provides better results compared to the existing 

methods. Predictive property models and efficient synthesis methods combined improve molecular design, making it easier to 

produce useful molecules and promoting developments in a number of scientific domains. 
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1. Introduction 

 

 Molecules are basic units of matter, which form the 

foundation of all chemical compounds. Molecules are made 

up of atoms bonded together; exhibit the various properties 

and features that originate from the specific arrangement of 

their component elements [1]. These entities perform an 

important role in several natural processes and synthetic 

applications, serving as the fundamental elements for the 

various ranges of compounds and materials found in our 

surrounding environment [2]. Based on the simplest 

diatomic molecules to complicated macromolecules like 

deoxyribonucleic acid (DNA) and proteins, the molecule 

constitutes an immense and complicated surface that 

underlies the intricacy of organisms and the substances 

humans encounter across in our everyday lives [3]. Further,  

 

 

advancements in molecular research have led to significant 

developments in sectors including medicine as well as 

materials science, and nanotechnologies, revealing the 

profound influence that an in-depth understanding of 

molecules could have on scientific and technological 

advancements [4]. Molecular syntheses are the process of 

mixing atoms to produce new molecules. It is a significant 

process in biochemistry subsequently, it allows for the 

design as well as synthesis of an extensive range of 

compounds, including pharmaceuticals and materials [5]. 

Controlled manipulation of chemical processes allows for 

the synthesis of a wider range of molecules, therefore 

contributing to scientific progress and technological 

innovation [6]. Molecules, the basic building units of matter, 
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play an important role in defining the characteristics of 

substances in the physical world [7]. The microscopic 

entities are made up of atoms that have been chemically 

bonded together to produce a variety of compounds with 

distinct properties [8]. The molecular properties delve into 

the complexities in which these molecular structures interact, 

determining material behavior and properties. At the core of 

molecular characteristics are components such as molecule 

shape, size, as well as composition, each contribute to the 

entire behavior of the substances [9]. The type and strength 

of intermolecular interactions between molecules also 

significantly influence their chemical and physical properties 

[10]. Exploring these features offers valuable insight into 

phenomena like as solubility, melting temperatures, and 

reactivity, which are critical for understanding the larger 

consequences of molecular interactions [11]. This research 

into the characteristics of molecules extends beyond the 

laboratory, which influences the comprehension of natural 

processes, industrial utilizes, and the complex workings of 

biochemical structures [12]. Complexity, resource-intensive 

techniques, possible environmental effects, and limited 

predictability are the difficulties in synthesizing molecules 

with desired properties. The main goal of this research is to 

efficiently synthesize the molecules and predict their 

properties using DL, improving materials and discovering 

drugs through cutting-edge computational techniques. The 

study [13] proposed a graph convolution algorithm that 

exhibits consistent performance comparable with, or 

surpassing, algorithms employing constant molecular 

variables, in addition to prior implementations of graph 

neural networks on proprietary as well as public datasets. 

The research [14] explained that several Simplified 

Molecular-Input Line-Entry Systems (SMILES) are encoded 

for each molecule. It is an automatic augmenting data 

technique utilized in molecular property prediction that 

mitigates the issue of over fitting that arises from the limited 

data size present in molecule property forecasting datasets. 

The article [15] described the molecular transformers 

generate predictions through the process of assuming 

connections among the presence as well as absence of 

molecular structures in the given dataset's reactants, 

reagents, as well as products. It forecasts intricate chemical 

alterations without the need for customized principles. The 

paper [16] examined the development of the trained 

Bidirectional Encoder Representation from Transformers 

(BERT) to gather molecular sub-structural data, which can 

be utilized for forecasting molecular properties. They 

introduce molecular representation with bidirectional 

encoder representation from transformers (Mol-BERT), an 

innovative end-to-end DL system that integrates a trained 

BERT algorithm specifically designed for molecular 

characteristic forecast in an efficient molecule 

representation. 

 

2. Materials and Methods 

  

 The HGO-MLRNN technique is employed for 

predicting the molecular property. In the beginning stage, the 

dataset were gathered. The data collection was divided into 

two processes; they are training, and testing. The training 

process includes data pre-processing, feature extraction, 

molecular property prediction, and molecular synthesis. The 

testing process includes results. The second stage is to 

preprocess the data were done by min-max normalization. 

After that process, the PCA technique is used for the feature 

extraction process. Following that, the extracted data was 

utilized by the HGO-MLRNN method to predict the 

molecular property. The entire flow of this molecular 

property prediction is shown in (Fig.1). 

 

2.1. Dataset 

 

 The CHEMBL [17] is an open data resource that 

makes use of the Drug Bank and CHEMBL databases to 

provide detailed data on the functional, binding as well as 

ADMET characteristics of a wide range of drug like 

bioactive chemicals. This important data is handpicked, 

chosen and standardized from reputable literature sources to 

improve its quality and suitability for use in many chemical 

biology and drug development research fields. As the 

CHEMBL database has 5200 protein targets and 5.4 million 

bioactivity values for more than a million compounds. They 

identified molecules using the SMILES string format, which 

was created with both grammatical consistency and machine 

friendliness in mind. The characters used in SMILES 

representations that represent atoms, bonds and chemical 

structures. The molecule length ranges from 35 to 75 and the 

SMILES molecule is encoded in a one pass, providing every 

character in a 53-dimensional vector of zeros. We split the 

dataset into two types, namely: training (80%) and testing 

(20%).  

 

2.2. Preprocessing using Min-max normalization 

 

 Pre-processing in molecular property prediction 

improves data representation for computing efficiency by 

using methods including reducing dimensionality, 

component determination, as well as scalability to improve 

model training with prediction speed. Min-max 

normalization improves effectiveness in predicting 

molecular properties. By converting the component values 

into a standardized range, preventing numeric instabilities, 

and increasing speed convergence throughout model 

development. Such streamlined preprocessing allows for 

quicker and more effective development, which leads to 

better prediction performance. Min-max normalization, also 

referred as variation normalization, corresponds to a linear 

adjustment of the original information, where max represents 

the maximum while min represents the minimum of sample 

information. Using the counterfactual identification 

technique, the dimension of a normal characteristic is zero. 

The value of an anomalous characteristic represents a 

positive integer. Therefore, it must be normalized according 

to a natural integer. Normalizing the data is an important 

stage, where every value must be stretched to a suitable 

range. This approach assists to reduce large discrepancies in 

characteristics: 

 

Ψ𝑗,𝑖 = 𝑅𝑜𝑢𝑛𝑑 [(
𝑍𝑗𝑖−min(𝑍𝑖)

𝑚𝑎𝑥(𝑍𝑖)−min (𝑍𝑖)
) ∗ 𝑀]      (1) 

 

WhereΨ𝑗,𝑖denotes a normalized value from 𝑍𝑗𝑖within the 

range of 0 𝑡𝑜 𝑀in integer representation, min (𝑍𝑖)is the 

minimal value that defines the 𝑖th characteristic, while max 

(𝑍𝑖)represents a maximal value that describes the 𝑖th 

characteristic. 
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2.3. Feature extraction using Principal component analysis 

(PCA) 

 

 Feature extraction in molecular property prediction 

simplifies data by extracting important information from 

molecular structures, increasing computational effectiveness 

and allowing for more accurate predictions with less 

computational materials. PCA improves molecular property 

forecasting through the extraction of essential properties 

from significant information. It decreases dimensionality and 

captures the most important variance. In terms of molecular 

properties, PCA improves model effectiveness by 

concentrating on essential molecule characterizations, 

resulting in more accurate predictions with less computing 

complexity. PCA provides one of the most extensively used 

methods for reducing information dimensionality. Its 

primary goal is to correlate information samples between 

highly dimensional regions to a lower dimensional region 

utilizing an orthogonal matrix. The objective function for 

𝐼𝑃𝐶𝐴could be properly defined as equation (2). 

 

𝐼𝑃𝐶𝐴(𝑍) =  
𝑚𝑎𝑥

𝑂
∑ ||𝑧𝑗

𝑚
𝑗=1 − 𝑧̅||2   (2) 

       

𝑝. 𝑠. 𝑂𝑆𝑂 = 1 

 

Equation (2) might be reduced to the corresponding trace 

representation after a straightforward algebraic 

modification, that is, equation (3). 

 

𝐼𝑃𝐶𝐴(𝑂) =  
𝑚𝑎𝑥

𝑂
∑ ||𝑂𝑆(𝑤𝑗

𝑚

𝑗=1

− �̅�)||2 

=
𝑚𝑎𝑥

𝑂
 𝑠𝑞{𝑂𝑆(𝑤𝑗 − �̅�)(𝑤𝑗 − �̅�)𝑆𝑂}     (3) 

       

=
𝑚𝑎𝑥

𝑂
 𝑠𝑞{𝑂𝑆𝐷𝑂} 

 

𝑝. 𝑠. 𝑂𝑆𝑂 = 1 

 

The covariance matrices represent  𝐷 = ∑ (𝑤𝑗 −𝑚
𝑗=1

�̅�)( (𝑤𝑗 − �̅�)𝑆, and  �̅� =  
1

𝑚
∑ 𝑤𝑗

𝑚
𝑗=1 . While 𝑠𝑞(∗)signifies 

matrix ∗ trace, which is the sum of its principal diagonal 

components of * matrix.  

 

2.4. Hybrid Gradient-Based optimization with multi-layer 

recurrent neural network (HGO-MLRNN) 

 

 HGO-MLRNN combines hybrid gradient-based 

optimization and multi-layer recurrent neural networks to 

create molecules and predict their properties, developing 

applications in discovering drugs and materials research. 

 

2.4.1. Multi-layer recurrent neural network (MLRNN) 

 

 MLRNN predicts molecule characteristics through 

discovering the complicated connections in molecular 

structures, which helps with synthesizing optimization and 

property estimate. The MLRNN design leverages earlier 

information (𝑠 − 1) to create result information for the 

present time (𝑠). The information provided and it 

transmitted through a hidden layer for development. There is 

an interface to keep the prior information from the hidden 

component in the context of the element. The equation is 

provided through the following in Equation (4-5): 

 

𝑔𝑠 = 𝜑𝑔(𝑉𝑗𝑚𝑤𝑠 + 𝑈𝑔𝑔𝑠−1 + 𝑎𝑔)  (4) 

 

𝑧𝑠 = 𝜑𝑧(𝑋𝑜𝑢𝑡𝑔𝑠 + 𝑎𝑧)   (5) 

       

Both vectors 𝑔𝑠−1 𝑎𝑛𝑑𝑔𝑠represent the hidden layers from 

earlier and present times, correspondingly. The activation 

performed for the hidden as well as output layers 

are 𝜑𝑔 𝑎𝑛𝑑 𝜑𝑧, accordingly. Where 𝑉𝑗𝑚   represents the 

weighted matrices among the hidden layers as well as input. 

Where 𝑈𝑗𝑚represents the weighted matrices among the 

hidden layers.Both vectors 𝑎𝑔 𝑎𝑛𝑑 𝑎𝑧 indicate biased in the 

hidden and output layers respectively, and 𝑋𝑜𝑢𝑡 represents 

the weighted matrices among the hidden and output layers. 

Standard activation operators such as Rectified Linear Unit 

(ReLU), sigmoid, as well as tanh might have 

slow converging speeds. As a result, alternative non-linear 

operations, such as bipolar-sigmoid, as well as power-

sigmoid activation processes were employed in developing 

MLRNN. The equations are described as follows in 

Equation (6-7): 

 

Bipolar-sigmoid activation processes: 

 

                  𝜑(𝑤) =
1−𝑓−𝜀𝑤

1+𝑓−𝜀𝑤        (6) 

Where휀 > 2. 

Power-sigmoid activation processes: 

 

                  𝜑(𝑤) =  {

(1−𝑓−𝜀𝑤)(1+𝑓−𝜀)

(1−𝑓−𝜀)(1+𝑓−𝜀𝑤)
|𝑤| < 1

𝑤𝑏|𝑤| < 1
     (7) 

 

Where휀 > 2 𝑎𝑛𝑑 𝑏 ≥ 3. 

 

2.4.2. Hybrid Gradient-Based Optimization (HGO) 

 

 HGO improves molecule synthesis efficiencies by 

using optimized structures and gradient-based approaches to 

predict properties accurately and optimize specifically. The 

HGO relies on 2 operators for updating the solutions; every 

one of the molecules has its own function. The initial 

function represents a Gradient Search Rule (GSR), that is 

utilized toward enhance the discovery, and a second function 

serves as the Local Escape Operators (LEO) that are utilized 

to improve the exploitation capability. The initial step in 

HGO is to create a molecule 𝑊 𝑤𝑖𝑡ℎ 𝑀solutions that are 

arbitrarily generated employing the equation that follows: 

 

𝑤𝑗 =  𝑤𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 × (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛), 𝑗 = 1,2, . . , 𝑀 (8) 

 

The searching region limitations are𝑤𝑚𝑖𝑛𝑎𝑛𝑑𝑤𝑚𝑎𝑥, and 

𝑟𝑎𝑛𝑑𝑟𝑎𝑛𝑑 ∈ [0,1] indicates an arbitrary number. The value 

of fitness for every solution is subsequently calculated and 

the optimal solution is selected.The GSR with direction 

movements (DM) is used to modify the outcomes (𝑤𝑗
𝑗𝑠

, 𝑗 =

1,2, . . , 𝑀)in the direction(𝑤𝑎 − 𝑤𝑗
𝑗𝑠

).𝑤𝑎. Describes the 

most optimal solution. This update procedure is 
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accomplished by calculating novel three solutions 

as 𝑤1𝑗
𝑗𝑠

, 𝑤2𝑗
𝑗𝑠

, 𝑎𝑛𝑑 𝑤3𝑗
𝑗𝑠

 

𝑤1𝑗
𝑗𝑠

= 𝑤𝑗
𝑗𝑠

− 𝐺𝑆𝑅 + 𝑟𝑎𝑛𝑑 × 𝜌1 × (𝑤𝑎 − 𝑤𝑗
𝑗𝑠

)  (9) 

 

Equation (10) uses 𝜌1 to enhance the balance among 

exploiting and exploring throughout the optimizing 

procedure. It is described as in Equation (10) 

 

𝜌1 = 2 × 𝑟𝑎𝑛𝑑 𝛼 − 𝛼    (10) 

 

Where 

 

𝛼 = |𝛽 × sin (3𝜋/2 + sin (𝛽 × 3𝜋/2))|  

 

𝛽 = 𝛽𝑚𝑖𝑛 + (𝛽𝑚𝑎𝑥 − 𝛽𝑚𝑖𝑛) × (1−(𝐽𝑠/𝑀𝑎𝑥𝐽𝑠)3)2 

 

Where 𝛽𝑚𝑖𝑛 = 0.2 𝑎𝑛𝑑  𝛽𝑚𝑎𝑥 = 1.2.  

 

Whereas 𝑀𝑎𝑥𝐽𝑠 represents entire iterations. The GSR is 

described in the following manner in Equation (11). 

 

𝐺𝑆𝑅 = × 𝑟𝑎𝑛𝑑𝑛 × 𝜌2 × (2 × ∆𝑤 × 𝑤𝑗
𝑗𝑠

)/(𝑧𝑜𝑠 − 𝑧𝑟𝑠 + 휀)                                              

                             (11) 

With  

∆𝑤 = 𝑟𝑎𝑛𝑑(1: 𝑀) × |((𝑤𝑎 − 𝑤𝑞1
𝑗𝑠

) + 𝛿)/2| 

𝛿 = 2 × 𝑟𝑎𝑛𝑑 × (|(𝑤𝑞1
𝑗𝑠

+ 𝑤𝑞2
𝑗𝑠

+ 𝑤𝑞3
𝑗𝑠

+ 𝑤𝑞4
𝑗𝑠

)/4 − 𝑤𝑠
𝑗𝑠

|) 

 

Where, 𝑟𝑎𝑛𝑑(1: 𝑀) is a randomized vector with 

𝑀dimension (𝑞1, 𝑞2, 𝑞3, 𝑎𝑛𝑑 𝑞4) referring to picked 

integers from[1, 𝑀]. Equation (10) defines the formulation 

for 𝜌2. Equations (12) and (13) update the 

positions𝑧𝑜𝑗  𝑎𝑛𝑑 𝑧𝑟𝑗, respectively. 

 

𝑧𝑜𝑠 = 𝑟𝑎𝑛𝑑 ×
𝑤𝑡+𝑤𝑠

2
+ 𝑟𝑎𝑛𝑑 × ∆𝑤  (12) 

 

𝑧𝑟𝑠 = 𝑟𝑎𝑛𝑑 ×
𝑤𝑡+𝑤𝑠

𝑗𝑠

2
− 𝑟𝑎𝑛𝑑 × ∆𝑤  (13) 

       

With  

𝑤𝑡 = 𝑤𝑗
𝑗𝑠

− 𝑟𝑎𝑛𝑑𝑛 × 𝜌1 × (2 × ∆𝑤 × 𝑤𝑗
𝑗𝑠

)/(𝑤𝑎 −

𝑤𝑤𝑜𝑟𝑠𝑡 + 𝜖)   (14) 

 

𝑤2𝑗
𝑗𝑠

= 𝑤𝑎 − 𝐺𝑆𝑅 + 𝑟𝑎𝑛𝑑 × 𝜌2 × (𝑤𝑞1
𝑗𝑠

− 𝑤𝑞2
𝑗𝑠

)   (15)  

 

𝑤3𝑗
𝑗𝑠

=  𝑤𝑗
𝑗𝑠

− 𝜌1 × (𝑤1𝑗
𝑗𝑠

− 𝑤2𝑗
𝑗𝑠

)   (16) 

 

Lastly, depending on the coordinates 𝑤1𝑗
𝑗𝑠

, 𝑤2𝑗
𝑗𝑠

 𝑎𝑛𝑑 𝑤3𝑗
𝑗𝑠

, 

a novel solution at iterations 𝐽𝑠 + 1 are discovered in 

Equation (17): 

 

𝑤𝑗
𝑗𝑠+1

=  𝑞𝑏 × (𝑞𝑎 × 𝑤1𝑗
𝑗𝑠

+ (1 − 𝑞𝑎) × 𝑤2𝑗
𝑗𝑠

) + (1 −

𝑞𝑏) × 𝑤3𝑗
𝑗𝑠

                  (17) 

 

Where 𝑞𝑎 𝑎𝑛𝑑 𝑞𝑏 represent two arbitrary integers. 

Furthermore, the LEO is used to increase the exploiting 

capability of GBO. For modifying the solution 𝑤𝑗
𝑗𝑠

 based on 

the possibility 𝑜𝑞, use the equation provided below in 

Equation (18): 

 

𝑤𝑗
𝑗𝑠+1

=

 {
𝑤𝑗

𝑗𝑠
+ 𝑒1 + 𝑋1 + 𝑒2 × 𝜌1 × 𝑋3 + 𝑣2 × 𝑋2/2 𝑜𝑞 < 0.5

𝑤𝑎 + 𝑒1 + 𝑋1 + 𝑒2 × 𝜌1 × 𝑋3 + 𝑣2 × 𝑋2/2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                              (18) 

 

𝑋1 = (𝑣1 × 𝑤𝑎 − 𝑣2 × 𝑤𝑙
𝑗𝑠

), 

 

𝑋2 = (𝑤𝑞1
𝑗𝑠

− 𝑤𝑞2
𝑗𝑠

), 

 

𝑋3 = (𝑣3 × (𝑤2𝑗
𝑗𝑠

− 𝑤1𝑗
𝑗𝑠

)) 

 

Within equation (18), 𝑒1  ∈ [−1,1] 𝑎𝑛𝑑 𝑒2represent regular 

and standard randomized integers, correspondingly. 

𝑢1, 𝑢2 𝑎𝑛𝑑 𝑢3 are three randomly generated integers 

specified as in Equation (19a-c) 

 

𝑢1 = 𝐾1 × 2 × 𝑟𝑎𝑛𝑑 + (1 − 𝐾1)   (19 a) 

 

𝑢2 = 𝐾1 × 𝑟𝑎𝑛𝑑 + (1 − 𝐾1)   (19b) 

 

𝑢3 = 𝐾1 × 𝑟𝑎𝑛𝑑 + (1 − 𝐾1)   (19c) 

      

 

Where 𝐾1denotes binary integer(𝑖. 𝑒. , 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 0 𝑜𝑟 1). 

Thus, the novel solution is derived utilizing the subsequent 

equation (20): 

 

𝑤𝑙
𝑗𝑠

= 𝐾2 × 𝑤𝑜
𝑗𝑠

+ (1 − 𝐾2) × 𝑤𝑟𝑎𝑛𝑑   (20) 

      

Where 𝐾2is equivalent to 𝐾 − 1 then 𝑤𝑜
𝑗𝑠

  denotes a selected 

solutions for 𝑊, whereas 𝑤𝑟𝑎𝑛𝑑  signifies an arbitrary 

solution produced employing equation (8).The primary 

phases of the HGO technique are shown in Algorithm 1. 

 

Algorithm 1: Hybrid Gradient-Based Optimizer (HGO) 

 

Initializing the variables of HGO: 𝜖, 𝑜𝑞, 𝑀𝑎𝑥𝐽𝑠  

Maximum. Iteration number, 𝑀: Molecule size. Initialize at 

random the molecule of 𝑀 vectors using Equation (8). 

Estimate the position of every single vector using the fitness 

factor fit. Establish the worst and best solutions:  

 

𝑤𝑏𝑒𝑠𝑡 , 𝑤𝑤𝑜𝑟𝑠𝑡  

 

Let 𝐼𝑡 = 1. While 𝐽𝑠 ≤ 𝑀𝑎𝑥𝐽𝑠𝑑𝑜 for each vector 𝑤𝑗
𝐽𝑠𝑑𝑜.  

Select 4 integers arbitrarily ranging 

from [1. . 𝑀]  𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡: 𝑞1 ≠ 𝑞2 ≠ 𝑞3 ≠ 𝑞4. Upgrade the 

positions of the vector 𝑤𝑗
𝐽𝑠+1

 using Equation (17). Estimate 

the qualities of the vector 𝑤𝑗
𝐽𝑠+1

  using the fitness factor end 

for if 𝑟𝑎𝑛𝑑 < 𝑜𝑞 then. Upgrade the positions of 𝑤𝑗
𝐽𝑠+1

 using 

the I branch of Equation (18) else. Upgrade the positions of 

𝑤𝑗
𝐽𝑠+1

  using the II branch of Equation (18).  

end if Establish the worst and best solutions: 𝑤𝑏𝑒𝑠𝑡 , 𝑤𝑤𝑜𝑟𝑠𝑡  

𝐽𝑠 = 𝐽𝑠 + 1. end while Return the best solution  𝑤𝑏𝑒𝑠𝑡 
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2.5. Molecular synthesis 

 

Molecular synthesis for molecular property 

prediction employs computational techniques to design and 

generate distinctive compounds with the required properties. 

Using modern modeling methods, it forecasts molecular 

behaviors depending on composition, structure, as well as 

environmental variables. Through analyzing the interactions 

between molecules, quantum mechanics, as well as 

electronic structure, it develops molecular compounds that 

have been optimized for particular functions. This method 

allows for quick exploration of a large chemical dimension, 

which accelerates material discoveries as well as drugs 

development. By utilizing DL with statistical techniques, it 

provides accurate predictions about properties including 

reactivity, solubility, as well as toxicity, facilitating focused 

molecular development for a variety of sectors, like 

materials research, pharmaceuticals and then environmental 

engineering. 

 
3. Results and discussion 

 

Utilizing the Adam optimizer with a 64-batch batch 

dimension and a starting learning rate of 0.0001. These 

parameters have been implemented using Py Torch (version 

1.12.0) with a Deep Graph Library. Results for molecule 

synthesis include assessing computational models' accuracy, 

efficiency, and predictive capacity in producing molecules 

and anticipating their properties, which is essential for 

progressing drug development and materials research. In this 

article, we collected the existing methods for molecular 

property prediction like “gated recurrent unit (GRU) [18], 

long short-term memory (LSTM) [18], as well as one-

dimensional convolutional gated recurrent unit neural 

network (1D-CNN-GRU) [18]”. “Mean absolute error 

(MAE), Mean squared error (MSE) and Root mean square 

error (RMSE)” are those metrics used to evaluate the 

performance of existing and proposed techniques. 

 

 

3.1. Mean squared error (MSE) 

 

MSE quantifies an average squared variance 

between predicted and real results. Within the framework of 

creating molecules and predicting their properties, MSE 

measures the model's efficiency. Table 1 and 

Fig.2demonstrate the MSE values and graphical 

representation. LSTM [18] (0.0287), GRU [18] (0.0292), 

and 1D-CNN-GRU [18] (0.023) are the MSE values for 

existing methods. When compared to the proposed and 

existing methods our proposed method HGO-MLRNN 

achieves (0.0201) superior results. 

 

3.2. Root mean square error (RMSE) 

 

RMSE improves efficiency in molecule synthesis 

by offering a succinct metric for evaluating prediction 

accuracy. It simplifies model assessment, leading 

individuals toward more reliable and productive approaches 

to molecule development and property prediction. Table 2 

and Fig.3 represents the values and graphical representation 

for RMSE. The existing method values for RMSE are 

LSTM [18] (0.1696), GRU [18] (0.1709) and 1D-CNN-

GRU [18] (0.1517). Our proposed HGO-MLRNN method 

(with a value of 0.1231) offers a better RMSE efficiency 

compared to the existing methods.  

 
3.3. Mean absolute error (MAE) 

 

MAE calculates the average absolute distinction 

among anticipated and actual values. In molecular synthesis, 

it measures the accuracy of property predictions and 

evaluates the model performance in computation 

circumstances. Table 3 and Fig.4 shows the MAE values and 

graphical representation. The existing methods attain LSTM 

[18] (0.0862), GRU [18] (0.0863), and 1D-CNN-GRU [18] 

(0.0693). In comparison to both proposed and existing 

methods, our proposed HGO-MLRNN method establishes a 

superior outcome (0.0612). Fig.5 demonstrates the entire 

actual and predicted values of HGO-MLRNN.  

 

 

Table 1. Values for MSE 

Method MSE 

LSTM [18] 0.0287 

GRU [18] 0.0292 

1D-CNN-GRU [18] 0.023 

HGO-MLRNN [Proposed] 0.0201 
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Figure 1. Overview of this research 
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Figure 2. Graphical representation of MSE 

  

 

 

Table 2. Values for RMSE 

Method RMSE 

LSTM [18] 0.1696 

GRU [18] 0.1709 

1D-CNN-GRU [18] 0.1517 

HGO-MLRNN [Proposed] 0.1231 
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Figure 3. Graphical representation of RMSE 

 

 

 

 

 

 

 

Table 3. Values for MAE 

Method MAE 

LSTM [18] 0.0862 

GRU [18] 0.0863 

1D-CNN-GRU [18] 0.0693 

HGO-MLRNN [Proposed] 0.0612 
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Figure 4. Graphical representation of MAE 

 
 

Figure 5. Actual and predicted values of proposed (HGO-MLRNN) 
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4. Conclusions 

 

The research emphasizes the essential importance of 

molecules as matter-building components, which influence 

natural processes and technological progress. The focus on 

molecule synthesis and properties highlights their 

importance in a variety of domains, including medicine and 

materials research. The described Hybrid Gradient-Based 

optimization with multi-layer recurrent neural network 

(HGO-MLRNN) methodology for predicting molecular 

properties shows superior results when compared to existing 

methods. The result is evidenced by lower MSE, RMSE, and 

MAE. The implementation of DL and computational 

approaches in molecular synthesis shows the potential to 

advance the discovery of drugs and materials research. 

Considering problems in the synthesis of molecules with 

desired properties, the suggested research seeks to handle 

these difficulties, highlighting the importance of molecular 

information for scientific and technological advancement. 

The results of this study emphasize the prospective influence 

of HGO-MLRNN in enhancing molecular property 

prediction and contribution to the larger field of molecular 

studies and their applications. Challenges in molecular 

synthesis and predicting properties include accuracy as well 

as computational complexities, and various chemical 

interactions, which restrict prediction ability. Improve 

molecule synthesis using artificial intelligence (AI) for 

efficient discovery of drugs, materials structure and 

properties prediction, hence improving scientific innovations 

and applications. 
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