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Abstract 

Utilizing microorganisms, spent catalyst bioleaching is a technique for extracting precious metals or other materials from 

used catalysts. Chemical processes can be accelerated by catalysts without consuming any of the materials involved. Reaching a 

high level of selectivity for the desired metals might be problematic. Using a leaching solution to dissolve or remove the 

molybdenum (Mo) from the catalyst material is the first step in the leaching process. Mo is extracted at a lesser rate than other 

metals by the use of acidophiles in the bioleaching of used catalysts. Mo-leaching with alkaline chemicals or other microbes has 

been investigated as a potential solution to this issue. This research optimization using Stochastic Gradient Descent (SGD) and 

Dynamic Deep Neural Network (DDNN) method was trained to predict the data on using Escherichia coli, Mo bioleaching from 

the wasted catalyst. Response modeling was used to investigate how metal extraction varied with changes in temperature, 

residence time, pulp density and particle size. The DDNN method is used to prevent over fitting on the training set throughout the 

training process. Using the coefficient of determination R2 score, the optimal network architecture was determined and tested on a 

test dataset. The most successful network was determined to have a two-layer hidden layer architecture with a logistic activation 

function (R2 = 0.978). 
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1. Introduction 

 

The massive amount of high-metal industrial waste 

created has forced the industry to search for recycling 

solutions in situations when basic mineral supplies are 

depleted or restricted. Modern research on metal extraction 

is focused on secondary metal resources while emerging 

technologies are supporting main metal resources in 

response to the increasing need for metals globally. For any 

recycling technique to be expanded for a full-scale operation 

for recovering metal values, it must be economical and 

environmentally beneficial [1]. A biotechnological answer 

to this problem is presented by the idea of wasted catalyst  

 

 

bioleaching. The use of microorganisms in biological 

leaching, a method for removing precious metals from ores, 

is expanded to include wasted catalysts. This procedure is in 

line with the ideas of the circular economy and green 

chemistry yet it differs from conventional disposal methods 

[2]. Solid catalysts are utilized for processing crude oil in an 

oil refinery to produce higher-quality petroleum products. 

These solid catalysts are composed of metals in the form of 

oxides of metals, metal sulfides, nickel, aluminum, 

molybdenum, zinc and cobalt, among others. When solid 

catalysts are used in the refining of crude oil, they lose their 
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ability to be used again and these results in a waste product 

known as a waste catalyst [3]. Specialized microorganisms, 

bacteria, are used in spent catalyst bioleaching to target and 

remove valuable elements from the wasted catalyst matrix in 

a targeted manner. Through their interactions with the 

catalyst's material, these microbes can change or break down 

the substance's architecture in a manner that makes it easier 

to extract rich results in reduced environmental toxicity, 

using wasted secondary sources such as catalysts of the 

aforementioned metals is metals or other resources [4]. This 

strategy helps to create a more sustainable and profitable 

industrial landscape by providing a way to recover resources 

while simultaneously reducing the negative environmental 

impact of conventional disposal techniques [5]. The use of 

biotechnological methods for the handling of wasted 

catalysts highlights the increasing significance of 

environmentally and financially sustainable solutions in 

industrial processes. In addition to reducing waste, spent 

catalyst bioleaching has the potential to unlock the latent 

value of wasted catalysts, supporting more ethical and 

sustainable industrial procedures [6]. The incorporation of 

spent catalyst bioleaching into industrial processes might 

become a crucial tactic for making the most use of available 

resources and reducing the environmental effect of the 

chemicals and metallurgy sectors as this field's development 

and research continue [7]. Significant amounts of coke and 

metals can be found in the spent catalysts generated from 

both procedures. In the wasted hydro-processing catalyst, 

the concentrations of depositing elements are greater. After 

fulfilling their catalytic role in industrial processes, spent 

catalysts often include priceless metals like molybdenum. 

Utilizing microorganisms, such as fungus or bacteria that are 

acidophilic, bioleaching is an eco-friendly substitute for 

traditional chemical leaching techniques in which metals are 

extracted selectively [8]. Moreover, the rates of metal 

recycling are poor even in affluent nations necessitating the 

development of systems that enable high recycling rates. 

Because it lowers the need for fundamental mineral 

resources, lowers the cost of purchasing a new catalyst and 

very advantageous [9]. Regeneration is feasible when the 

catalyst's activity falls below the permissible threshold. 

However, it is not always achievable. The catalyst activity 

falls to values below what is considered acceptable after a 

few rounds of reuse coupled with regeneration and further 

regeneration cannot be economically viable known as "spent 

catalysts," these catalysts are disposed of as solid trash. 

Globally, an estimated 4 x 108 kg of wasted catalysts is 

produced each year [10]. The study [11] offered using 

machine learning (ML) techniques might eliminate the need 

for expensive and time-consuming trials to determine the 

ideal circumstances for the bioleaching procedures, which 

are complicated and time-consuming. ML is a branch of 

artificial intelligence that has been shown to be accurate, 

dependable and economical in a range of settings. Random 

forest regression yielded the best results out of 40 

regression-based machine-learning algorithms and it was 

used to create an effective bioleaching process model. The 

research [12] presented work showcases the capability of 

cyanogenic bacteria to extract platinum group metals (PGM) 

from spent automotive catalysts (SAC) by bioleaching. 

Bacillus megaterium and Pseudomonas fluorescence were 

the two mesophiles used in the bioleaching of PGM from 

SAC. Studies on leaching under various circumstances were 

conducted to look into the production of cyanide and its 

function in PGM solubilization. The research [13] looked at 

how ultrasonic assistance with nitric acid pre-treatment 

affected the amount of PGMs that cyanogenic bacteria were 

able to leach. Using ultra sonication and acid pre-treatment, 

SAC specimens were first made free of competitive 

elements that can interfere with the PGM-cyanidation 

process following bioleaching. It was determined that an 

ultrasound power of 80%, a nitric acid concentration of 6M, 

an ultrasound duration of 50 minutes and an ultrasound 

wavelength of 37 kHz were the ideal pre-treatment settings. 

 

The article [14] proposed method for recovering 

precious metals, such as rare earth elements (REE), from 

commercial or consumer trash, which is bioleaching using 

organic acids. When agricultural or food scraps are utilized 

as the bioleaching agents' carbon substrates synthesis, bio 

hydrometallurgy can be a profitable and ecologically 

responsible method of recycling rare earth elements. An 

obstacle to REE bioleaching using organic acid is the partial 

transformation of a carbon base into an ideal combination of 

organic acids that has a high capacity to extract REEs. 

Native acidophilic bacteria from hot, acidic springs and 

mine drainage were gathered for this study's bioleaching 

tests [15]. On a variety of minerals, the native acidophilic 

bacteria were cultivated. To investigate bioleaching over 

time, uninoculated controls were used to assess variations in 

the amounts of heavy metals, pH and Eh. Therefore, 

depending on the kind of minerals, temperature and other 

factors, as well as the microorganisms' origin, the 

characteristics of bioleaching differed substantially. To 

represent and forecast these intricate bioleaching tendencies, 

we used an artificial neural network (ANN) model. Study 

[16] offered the ecologically sound preparation of the 

possibility of enabling the extraction of metals linked to 

platinum from spent three-way catalysts (TWC) 

Acidithiobacillusthiooxidans has been investigated for its 

ability to bioleach aluminum by acid. When contrasted with 

elemental sulfur that is sold for business, the synthesis of 

acid by A. thiooxidans was enhanced by the use of biogenic 

sulfur derived from desulfurization bioreactors. In 

comparison to a control batch made using commercial 

H2SO4, the lixiviation capacities of biogenic acid-containing 

bacteria and biogenic acid-containing bacteria in an 

exponential or stationary state were examined. Recycling 

old batteries is feasible both environmentally and 

economically, as the study [17] provide at their essential 

metal composition found. Conventional hydrometallurgical 

and pyro metallurgical extraction techniques need dangerous 

chemicals or require a lot of energy. It has been proposed 

that bioleaching manganese from discarded batteries as a 

secondary resource can accomplish two goals: lessen 

environmental impact and create income from waste. Along 

with being a straightforward process that generates less 

dangerous by-products, a bioleaching process can function 

with lower operational expenses, energy and water use. An 

effective acidithiobacillus caldus UVS10 bioleaching strain 

was produced in this investigation. The metallic biological 

leaching performance of “A. caldus UVS10 to spent FCC 

catalyst (SFCCC)” was assessed using batch and bioreactor 

testing. Batch outcomes of the experiment indicated that the 

SFCCC. Elevated SFCCC pulp density impeded metal 

leaching. A. caldus UVS10 generated an acidic environment 
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where Sb leaching was suppressed. The extracellular 

polymeric substances (EPS) have much larger La, V, Ni and 

Ce contents than the intracellular counterparts [18]. 

Utilizing three strains of Aspergillus, the bioleaching of 

aluminum (Al) metallic material from the used the initiator 

was studied in the study. Various spending catalyst loading 

densities were used for bioleaching in batch culture mode. 

By utilizing A. foetidus with 0.8% (w/v) catalysts loading, 

the maximum Al bioleaching efficiency of 88.43% was 

achieved and the rise in catalyst loading further reduced the 

efficiency. Furthermore, to facilitate the bioleaching of the 

catalyst utilized, molasses was employed as a low-priced 

carbon source at different attentions [19]. The article [20] 

proposed a unique adaption process was used to explore the 

Acidithiobacillus ferrooxidans and Acidithiobacillus 

thiooxidans bioleaching two precious metals, nickel (Ni) 

and cobalt (Co), lithium-ion batteries (LIBs) from 

abandoned laptops. Various biological leaching techniques 

were used, such as bioleaching of A. ferrooxidans and A. 

thiooxidans in one step and two steps in the wasted medium. 

It was assessed how the silver ion affected the Co and Ni 

bioleaching using these techniques. Additionally, a unique 

strain adaptation strategy was developed in response to the 

hazardous solid portion of the powdered battery, which led 

to bioleaching and a very quick adaption period. In this 

study, we utilize predictive modeling and reaction analysis 

in the context of bioleaching from wasted catalysts 

 

2. Materials and Methods 

 

In this section, we detail the use in the context of 

spent catalyst bioleaching for response analysis and 

predictive modeling. Fig.1 depicts the flow of the proposed 

method. 

 

2.1. Microorganisms 

 

The bioleaching process used E. coli DH5α. 

Maximum cell density was reached by growing the culture 

before the catalyzed waste was added in a two-step 

bioleaching procedure. A 2% v/v inoculation of an actively 

developed E. coli culture was added to 100 mL of 250 mL 

conical flasks with LB miller broth, which, using an 

incubation shaker running at 150 rpm, were incubated at 25, 

30, or 37 °C. LB medium was used to generate plates with 

nutrients on them for counting colony-forming units (CFUs) 

of Escherichia coli. The flasks were refilled with a catalyst 

after a 24-hour growth of the culture period. 

 

2.2. Spent catalyst 

 

Catalyst with a size range of less than 75, 75–100 

and more than 100μm was powdered and dry-screened via 

sieves. 

 

2.3. The bioleaching technique 

 

Over the course of 30 days, various pulp densities, 

particle sizes and temperatures were used for bioleaching. 

To assess how these characteristics affected bioleaching, a 

mathematical model was used for the collected data. 

Samples of 2 milliliters were taken out of the culture flasks 

for analysis of metals at pre-arranged intervals. Duplicates 

of every experiment were performed. Employing optical 

emission spectroscopy with inductively coupled plasma, the 

concentrations of heavy metals were determined. 

 

2.4. Activations 

 

This research assessed three distinct activation 

functions: rectified linear unit (ReLU), tanh and logistic. 

Non-linear functions like logistic and tanh restrict the output 

inside the intervals of 0 to 1 and −1 to 1, accordingly. 

Contrarily, ReLU is a linear activation function that gets rid 

of values that are negative. 

 

𝑅𝑒𝐿𝑈(𝑤) = max⁡(0, 𝑤)    (1) 

 

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑥) = 1/(1 + 𝑓−𝑤)   (2) 

 

tanh(𝑤) =
(𝑓𝑤−𝑓−𝑤)

(𝑓𝑤+⁡𝑓−𝑤)
    (3) 

 

The training set and test set were randomly selected from 

the dataset that was made available for mathematical 

modeling. After modeling, the system was assessed using a 

set of tests, which included the data points of 10%. As the 

name implies, the training set was utilized to train the 

DDNN and included 90% of the available data points. 

 

2.5. Data range and interface modeling 

 

Four input variables were utilized to assess the 

impact on Mo-bioleaching: temperature (T) (25, 30 and 37 

°C), pulp density (PD) (0.5, 0.75 and 1%) and particle size 

(PS) (< 75, 75–100 and > 100 μm) and duration of 

bioleaching (t). The collection of data gathered in this way 

was utilized to train the DDNN. These are the crucial 

bioleaching prospective factors, which is why they were 

assessed for modeling. The research's coding and all of its 

data will be available to the public. 

 

2.6. Stochastic Gradient Descent and Dynamic Deep 

Neural Network (SGD-DDNN) 

 

SGD-DDNN may propose to train a dynamic 

neural network with the ability to dynamically modify its 

design by utilizing SGD as the optimization technique. 

Combining these two may result in effective training and 

enhanced performance in situations where the ideal network 

topology is unknown or subject to change over time. 

 

2.6.1. Dynamic Deep neural network (DDNN) 

 

The interpretation of an idea by a DDNN is the 

main topic of this section. Neurons in a DDNN are arranged 

in a series of layers, with each layer's neuron activations 

serving as an input. The neurons then carry out a basic 

calculation, such as adding up the weighted total of the input 

and activating a nonlinear function. From the input to the 

output, the network's neurons carry out a sophisticated 

nonlinear mapping. Using a method known as error back 

propagation, each neuron's weight is modified to determine 

this mapping based on the data. Fig.2 displays a neural 

network's architectural layout. 



International Journal of Chemical and Biochemical Sciences (IJCBS), 25(17) (2024): 24-33 

 

Sidhu et al., 2024     27 
 

2.6.2. Network optimization using stochastic gradient 

descent (SGD) 

 

In a linear model, the stochastic gradient descent 

approach was utilized for network optimization. More 

sophisticated DDNN networks were trained using this 

algorithm. A significant simplification is provided by the 

SGD method. Rather than calculating the gradient of 

𝐹𝑚(𝑒𝑥),using one randomly selected sample as the basis for 

each iteration, this gradient is estimated. 

 

𝑥𝑘+1 = 𝑥𝑠 − 𝛾𝑠∇𝑥𝑅(𝑦𝑠 , 𝑥𝑠)   (4) 

 

Every iteration's random selection of instances determines 

the stochastic process {𝑥𝑠 , 𝑠 = 1,… }.It is anticipated that 

even the noise created by this streamlined process acts as 

expected by the literature on stochastic approximations, 

which has explored the convergent process of SGD. 

Generally, diminishing gains that meet the requirements are 

needed for convergence outcomes. 

 

Σ𝑠𝛾𝑠
2 < ∞𝑎𝑛𝑑Σ𝑠𝛾𝑠 = ⁡∞    (5) 

      

  

Under moderate circumstances, the Robbins-Siegmund 

theorem offers a way to achieve virtually certain 

convergence, even in situations where the function of losses 

is not differentiated. The SGDs speed of convergence is 

constrained by the noisy estimation of the genuine gradient. 

The parameter estimate's variance occurs when the gains 

drop off too slowly and 𝑥𝑠declines uniformly slowly. When 

the profits decrease too soon, the parameter estimate's 

expectation 𝑥𝑠approaches the ideal state relatively slowly. 

The best convergence speed is attained utilizing gains under 

adequate regularity conditions𝛾𝑠
~⁡𝑠−1. Subsequently, the 

residual error expectation falls at a comparable rate, that is, 

Ε𝜌~⁡𝑠−1. The gradients are multiplied by a positive definite 

matrix Γ𝑠in the second-order stochastic gradient descent 

(2SGD), This gets close to the Hessian's inverse 

 

𝑥𝑠+1 =⁡𝑥𝑠 − 𝛾𝑠Γ𝑠∇𝑥𝑅(𝑦𝑠, 𝑥𝑠)   (6) 

 

Regretfully, this alteration does not lessen the random noise, 

which enhances the variation of wt. Even with better 

variables, the residual error expectation declines as 𝑠−1that 

isΕ𝜌~⁡𝑠−1. 

 

3. Results and discussion 

 

To investigate the effects of temperature, pulp 

density, residence duration and particle size, bioleaching 

data was gathered at many data points. The training 

approach for DDNN modelling of the bioleaching data was 

carried out in accordance with the described methodology. 

Preprocessing experimental biological leaching data, 

optimizing the network as well as choosing the right 

network and parameters are all part of the training 

procedure. The parts that follow go into further depth about 

these stages. A DDNN was used for modeling that is non-

linear after a direct framework was used to describe the 

bioleaching information. To investigate how standardization 

affects the influence of the input variables in bioleaching, a 

linear model was developed. It's crucial to remember that 

the linear model in this case is a very simple DDNN with no 

hidden layers. 

 

3.1. Standardization of data for bioleaching modeling of 

wasted catalysts 

 

Data from a linear model was fitted to catalyst 

bioleaching and random values produced by the system 

were used to initialize weights (θ1, θ2, etc.). The fitted 

model was contrasted to the collection of data to calculate 

the error and use the gradient descent technique, an 

optimization method utilized to reduce a function of cost, 

which was utilized to reduce the sum of square errors for the 

fit of the model. In this instance, the cost function was the 

sum of the squares of the mistakes, which was reduced by 

an iterative process. Mo extraction is said to grow in tandem 

with increases in the values of temperature (T) and duration 

of residence (t), according to positive coefficient 

calculations. More influence on metal extraction is indicated 

by a greater coefficient value calculated for t. A decline in 

bioleaching is predicted by negative coefficients of PD and 

PS for the reasons listed below. Above a certain threshold, 

the quantity of metal that can be extracted from the same 

source quantity of metabolites or leachate rises when the 

amount of catalyst (measured in grams) in the leachate (100 

ml) is increased. This poses a threat to microorganisms. 

Reduced metabolite concentration and a decreased 

percentage of bioleaching (Y) are the outcomes of the 

ensuing decrease in the number of microbes. Lower PD 

results in greater metabolite concentrations due to microbial 

proliferation. Table 1 displays the CFU count that was used 

to track how PD affected microbial growth. 

 

3.2. Non-linear models in DDNN 

 

The bioleaching data's linear modeling produced an 

R2 value of 0.88, indicating that there was no linear 

distribution. As it was previously mentioned, DDNN can be 

used for Bioleaching and other non-linear biological process 

models. However, DDNN is more appropriate for data 

modeling sets in which the data spreading is uncertain. A 

DDNN network can be trained to predict the output given a 

history dataset. In this study, data from Bioleaching using 

wasted catalyst was installed to non-linear models using 

DDNN. To produce the output (or response), weights and 

inputs are combined to create the activating or transmission 

functions. Mathematical functions called activation 

functions (logistic, tanh, ReLU, etc.) introduce non-linearity 

into the system and use thresholds to regulate the output 

value. The ultimate output of the neuron is the value that the 

activation function provides. Using DDNN makes modelling 

non-linear relations simpler than with existing techniques. 

Since all DDNNs have neurons, connections amongst 

neurons and functions for activation, we all share a common 

property. Nonetheless, variances occur due to changes in the 

amount of hidden layers and neurons. Using modelling of 

the current data set based on trial and error, the ideal 

quantity of neurons and layers is identified. A neural 

network's parallel architecture, improved ability to describe 

systems that are not linear and capacity for learning to 

produce generalized models makes it a potent computing  
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Figure 1. Procedure flow for the proposed method 
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Figure 2. Architecture of DDNN 

 

 

 
 

Table 1. Plate count with different pulp densities 

 

 

Pulp density (PD) 

Plate count days (t) after the insertion of the wasted catalyst 

0 1 4 10 15 20 

25% 

4200 5000 700 100 80 50 

3800 4000 300 80 50 48 

50% 

4000 1000 - 10 2 * 

3800 1600 - 30 4 * 

100% 

4000 1400 200 - * - 

3900 1200 100 - * - 
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Table 2. Forecast by a trained network with a range of activation function 

 

 

T (days) PS (𝝁𝒎) T (℃) PD (%) Bioleaching (%) 

Bioleaching prediction (%) 

ReLU tanh Logistic 

6 >80 35.00 1.00 22.10 20.87 21.55 21.91 

10 77 35.00 0.75 40.80 41.56 41.70 39.33 

15 >80 28.00 1.00 36.21 34.48 34.35 33.18 

20 >80 35.00 0.50 58.35 61.02 60.40 58.16 

25 78 35.00 0.50 67.06 63.85 64.87 64.83 

30 75 35.00 0.75 72.89 71.09 71.12 70.36 

 

 
 

 
 

Figure 3. Underfitting, Overfitting, adequate fit
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Table 3. Three activation functions' average R2score values 

 

 

No. of 

hidden 

layers 

𝒕𝒂𝒏𝒉 ReLU Logistic 

1 .923 (.033) 
.972 

(.017) 

.970 

(.011) 

.8578 

(.043) 

.933 

(0.055) 

.931 

(0.057) 

.948 

(.028) 
.965 (.024) 

.978 

(.018) 

2 0.886 (.052) 
0.976 

(0.008) 

0.984 

(0.008) 

.867 

(.039) 

.980 

(0.012) 

.983 

(0.012) 

0.789 

(.083) 

0.891 

(.093) 

.905 

(.069) 

3 0.812 (.142) 
.945 

(.051) 

.951 

(.049) 

.907 

(.043) 

0.970 

(0.027) 

.975 

(0.024) 

0.829 

(.089) 

0.796 

(.120) 

.892 

(.067) 

 

 

 

 

 
 

  

 

Figure 4. R2 score versus neuron count, using activation function of logistics (a) 1 hidden layer (b) 2 hidden layer 
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Figure 5 (a) Logistic predictions value, (b) ReLU predictions value and (c) tanh predictions value 

 

 

 

tool. The predicted values and the test dataset derived from 

the three purposes of activation are shown in Table 2. 

 

3.3. Bioleaching using wasted catalyst modelling 

 

As seen in Fig. 2, a DDNN design for wasted 

catalyst bioleaching comprises four input variables in the 

input layer, a few hidden layers and an output layer. ReLU 

has been employed in the area of deep learning and has been 

shown to be effective in modelling. The utilized tanh and 

sigmoid functions, it has produced superior model fitting for 

biological systems. The issue of the model that is either over 

fitted or under fitted occurs while modelling a dataset. A 

simpler model is more likely to create underfitting, while a 

more complex model produces overfitting. Instances of over 

fitting, under fitting and a good fit for randomly chosen data 

points are shown in Fig.3. Various network designs using 

the three activation mechanisms yielded the highest R2 

score. The optimal model had two secret layer 

configurations (4, 9, 8 and 1); use the first concealed layer 

has nine neurons, whereas the second layer contains eight 

and it was generated by the network using the function of 

logistic activation. The optimal model with a tanh activation 

function has an arrangement of three hidden layers (4, 9, 7, 

1, 1) and a comparable R2 score of 0.978. With an R2 value 

of 0.979 and a three layer of hidden design (4, 8, 4, 7, 1), 

using a ReLU function in the network offered the greatest 

match. For the provided training data set, the algorithm 

identified the ideal model as ReLU. Then, utilizing the test 

dataset that was chosen at random, the R2scores of those  

 

 

 

models were assessed. For the test dataset that has not yet 

viewed, logistic, tanh and ReLU models yielded R2 values 

of 0.970, 0.960 and 0.963 each. The training model's 

capacity to generalize to new data is shown by higher R2 

scores. E.Coli bioleaching modeling has not been the subject 

of any investigations. Nevertheless, these outcomes are 

similar to the R2 values that have been reported in other 

bioleaching methods, which vary from 0.83 to 0.99. Based 

on its greatest R2 score, even with unseen data, the model of 

logistics was determined to be the most suitable model for 

the given objective. The variance in R2 of three predefined 

activation processes is used to score and three rates for 

neurons 2, 5 and 8 are shown in Table 3. It was noted that 

the network with the highest R2 score is not the one with the 

most complexity. Fig. 4 displays the difference of the R2 

score based on the number of neurons in the hidden layer. 

One hidden layer, the fluctuation of the R2 value with the 

quantity of neurons is seen in Fig. 4 a. Nine neurons were 

chosen for the first hidden layer and based on the fluctuation 

of R2 value with neurons, the first layer of nine neurons has 

a high 0.978 R2 value. Figure 4 b illustrates how the number 

of neurons affects the R2 score in the case of two hidden 

layers. Nine neurons were chosen for the first hidden layer, 

while the image illustrates the fluctuation of R2 score with 

neurons in the second layer. When the system configuration 

is (4, 9, 8, 1) the R2 score rises to 0.978, even more with two 

hidden layers. Fig. 5 shows the observed and projected 

values for the top three models, which were chosen 

according to the training R2 value. The training and test 

samples exhibit a strong connection with the anticipated and 
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actual values. The R2 scores for all three functions were 

quite high. Nonetheless, the logistic model outperformed the 

others and it is considered the test set as the most effective 

model with training for bioleaching using a catalyst. 

 

4. Conclusion 

 

In summary, recovered precious metals from 

abandoned catalysts can be recovered by a sustainable and 

promising method called wasted catalyst bioleaching. The 

research looked at how experimental bioleaching data was 

simulated and explored the effect of significant variables, 

including pulp densities, particle sizes, residence times and 

temperatures. With the use of the SDG algorithm and 

several activations, such as logistic, ReLU and tanh, the 

network's number of neurons and layers that are hidden was 

optimized. The experimental and anticipated values showed 

a strong connection. An R2 score of 0.978 was obtained by 

the optimal design with logistic activation. The genetic 

diversity of the microbial communities engaged in Mo 

bioleaching can be better understood in the future via 

metagenomic research. 
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