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Abstract 

 

The structural strength of gas and oil installations is threatened by corrosion, which creates maintenance problems and possible 

safety hazards. Properly estimating the rates of exterior corrosion is essential for preventative upkeep plan implementation and 

long-term structural reliability. This study investigates the use of ensemble learning techniques to improve corrosion rate prediction 

accuracy. This paper proposes a novel corrosion rate prognosis approach called Penguins Search Optimized Random Forest (PeSO-

RF). Data samples were gathered from multiple onshore pipeline locations to evaluate the suggested PeSO-RF approach. The 

suggested approach has been implemented via the Python language and trained on the available data. Additionally, the suggested 

method's effectiveness is evaluated against other methods that are currently in use and examined in terms of multiple metrics like 

MAE, R2, RMSE and MSE. These results show that, when it comes to corrosion rate prediction, the suggested strategy performs 

better than the others. The suggested methodology provides property managers to upkeep specialists with a useful and precise 

instrument to evaluate as well as reduce corrosion-related hazards on oil coupled with gas sites. 

Keywords: Oil and gas stations, corrosion, safety hazards, ensemble learning, Penguins Search Optimized Random Forest (PeSO-
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1. Introduction 

 The Metallurgical structures and machinery in oil, 

gas and refinery facilities are exposed to natural gas, crude 

oil, petroleum-based products along with sources of energy, 

water, chemicals, environment and soil. The oil, gas and 

refinery sectors are classified as high-risk industries because 

of the presence of substances that are flammable, explosive, 

poisonous to human health, or harmful to the environment 

[1]. An oil well is a bore that is drilled into the Earth to extract 

petroleum products and hydrocarbons from underground. In 

oil wells, natural gas, as well as water, is found in conjunction 

with other hydrocarbons, resulting in the production of 

natural gas. Gas wells are specifically constructed for the sole 

purpose of extracting natural gas [2]. Microbially Induced 

Corrosion (MIC) is the outcome of cooperative interactions 

among the metal surface, non-living products of corrosion as 

well as microorganisms and their byproducts. MIC, or 

Microbiologically Influenced Corrosion, is a complex 

phenomenon that is misunderstood by corrosion experts. 

Microorganisms, when present in specific concentrations and 

types, have been observed to increase the rate of corrosion in 

offshore systems [3]. The gas and oil sector has been the most 

corrosive source of energy since its inception. The power 

sector bears the largest portion of the overall cost associated 

with corrosion issues [4]. The materials utilized in the 

production of oil and gases are subjected to highly corrosive 

industrial conditions. While the overall rate of significant 

events in the oil and gas business is not too high, especially 

in the offshore field, the degradation of materials has the 

potential to cause expensive catastrophic failures that might 

have severe impacts on human life as well as the environment 

[5]. Corrosion affected by the presence or activity is referred 

as MIC. Multiple species are involved in MIC, thriving in 

colonies and constructing bio-films. They are capable of 

enduring and flourishing in harsh environments characterized 

by oxygen deprivation, absence of light, elevated salinity, 

extreme pH levels ranging from acidic to highly alkaline and 

varying temperatures [6]. “Corrosion-resistant alloys 
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(CRAs)” are employed in such situations due to their minimal 

susceptibility to general corrosion when exposed to elevated 

levels of “Carbon dioxide (CO2)” and “hydrogen sulfide 

(H2S)” under high pressures and temperatures. CRA is 

ambiguous because it refers to an element's response to oil 

field conditions rather than any inherent characteristics of the 

material, as opposed to carbon steel [7]. 

 Study [8] developed an analytical approach for 

analyzing the time variation failure probability caused by the 

advancement of corrosion in pipelines for oil and gas. It was 

projected how long the pipes would last before failing and 

required to be replaced or repaired. Study [9] developed a 

hybrid intelligence algorithm technique for predicting 

corrosion rates of multiple-phase flow pipelines. PCA-

CPSO-SVR, the suggested model, included “principal 

component analysis (PCA)”, “chaos particle swarm 

optimization (CPSO)” and “support vector regression 

(SVR)”. Research [10] created failure prediction models for 

exterior corrosion in under-the-ground gas transmission 

networks by considering conventional and 

environmental/geographical characteristics. Study [11] 

offered a platform risk assessment by forecasting the 

elimination age of existing frameworks in the “Gulf of 

Mexico (GoM)” Employing multiple ML methods, namely 

“gradient boosted regression tree (GBRT)” & “artificial 

neural network (ANN).” The study [12] introduced a 

probabilistic method for evaluating the seismic risk of 

pipeline infrastructure in Canada. Research [13] proposed a 

novel approach utilizing a “hybrid Bayesian network (BN)” 

and “Markov process” for accurately determining the “MIC” 

score, faults possibility and catastrophic failure duration of a 

subsea pipeline with internal corruption. “Bayesian Network 

(BN)” model was created to calculate an amount of MIC 

using a probabilistic approach, considering the interaction 

and dynamic non-linearity of important parameter values. 

Study [14] introduced an in-depth “Prognosis and Health 

Monitoring (PHM)” modeling structure for managing the 

integrity of gas pipeline systems. Its purpose was to prevent 

or minimize the occurrence of failures. The proposed PHM 

approach accounted for every possible mode of pipeline 

failure.  

 Research [15] provided a semi-supervised region 

generalization diagnosis technique for rusting leakage risk. 

Optical sensing equipment was successfully employed to 

detect and assess existing and potential leaks in pipelines. 

Study [16] created a functional ANN model to forecast the 

rate of air corrosion on carbon steel. Research [17] presented 

a methodology for forecasting corrosion rates based on a 

limited sample of laboratory-based metal corrosion data. The 

framework was devised to offer a novel approach for 

addressing the issue of pipeline corrosion in situations when 

there was a lack of enough genuine samples. The study [18] 

provided a novel evaluation system that utilized a blend of 

“fuzzy logic inference & machine learning” approaches. The 

factors that influence the criticality of pipeline failures in the 

framework encompass the impact of “transportation 

disruptions, safety as well as health considerations, 

environmental along with ecological effects and equipment 

maintenance”. Study [19] presented an innovative 

experimental framework, which employed multiple learning 

algorithms to anticipate the decommissioning choice based 

on a newly acquired dataset. Study [20] introduced a novel 

method for identifying degradation characteristics of a “GE 

MS 5002B” air turbine that served in the Hassi R'Mel gases 

field located in southern Algeria. The suggested methodology 

mainly depends on “Long Short-Term Memory (LSTM)” 

systems, employing deep learning techniques to analyze 

operational data. 

 The primary objective of the suggested approach 

(PeSO-RF) serves to improve the precision of forecasting 

exterior corrosion rates in oil and gas systems. This 

improvement will facilitate efficient planning of preventive 

maintenance and guarantee long-term structural 

dependability and safety. The remaining research can be 

classified into the following categories: Section 2 is dedicated 

to the presentation of our proposed method. Section 3 

outlines the experimental results of this study. Section 4 

presents the results of this research. 

 

2.2 Penguins Search Optimization Algorithm 

 The Penguins Search Optimization Algorithm is a 

method that draws inspiration from the hunting behavior of 

penguins. It involves collaborative efforts among penguins to 

optimize the overall energy expenditure and locate abundant 

food sources. The division of penguins into groups allows for 

an extensive exploration of the ocean to find the most 

abundant fishing spots. This objective is achieved by multiple 

dives and communication among the groups. The hunting 

procedure conducted on the penguins involves the 

modification of an algorithm called PeSO, which is designed 

to address problems related to combinatorial optimization. 

The PeSO process consists of five distinct steps:  

 Step 1: Initializing the algorithm parameters. 

 Step 2: Generate a population: This stage involves 

the random creation of a population of solutions.  

 Step 3: Construction of a new position: Once 

population p is generated, consisting of a certain number of 

groups, each group explores a place. After each exploration, 

the groups exchange information about the snow to enhance 

the research position for the next exploration, utilizing 

equation 1: 

C_new=C_last+rand ( )|W_best-W_id | (1) 

 The rand () function produces a random integer 

based on a specified distribution. It is employed to ascertain 

the present solution (D_last), the optimal localized solution 

(X_best), the ultimate solution (X_id) and the fresh solution 

(D_new). 

 Step 4: Update Best Groups/Optimal solution: 

Following each dive and exchange of information, penguins 

ascertain the optimal group, namely the group that consumed 

the most quantity of fish. 

 Step 5: Verification of the stopping condition: The 

algorithm checks whether the stop condition is satisfied. 

 

2.3. The Random Forest Method  

 RF algorithm is an ensemble approach that 

combines decision trees also trains several models using 

sampling from statistical data. When a new sample needs to 

be predicted, these models are employed to predict the new 

data set independently. The category of the new samples can 

be selected based on the premise that the minority is 

subordinate to the majority. Individual models exhibit 

sensitivity to data noise, leading to elevated variance. RF is a 

Bagging technique that relies on the bootstrap sampling 

approach. It has the capacity to reduce vulnerability to data 

disturbance and improve the accuracy and reliability of the 
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model. This method can be applied by training multiple 

algorithms on the same dataset and doesn't require any 

additional input. The RF method is trained by selecting a 

subset of features at random, rather than using all features. 

The model has two essential parameters: the total count of 

decision trees and the number of features employed to 

construct each distinct decision tree. The construction 

procedures of the RF system are as follows:  

 Step 1: A new data set containing m samples can be 

created by running m iterations of the samples using 

replacements from the previous data set. Moreover, a total of 

"f features" are chosen from the "n" available features to act 

as input features by applying the sample without replacement 

concept. 

 Step 2: Determine the coefficient of Gini impurities 

of the subgroup specimens belonging to “class𝐶𝑘", 

represented as “𝐶𝑘”, in the new “sample-set 𝐷”. 

Gini(D) =  1 − ∑ (
|𝐶𝑘|

|𝐷|
)2𝐾

𝐾=1   (2) 

 Compute the Gini index, denoted asGini(D, A), for 

each “feature 𝐴” & its “corresponding value 𝑎”.  

Gini(D, A) =
|𝐷1|

|𝐷|
Gini(D1) +

|𝐷2|

|𝐷|
Gini(D2) 

𝐷1 = {(𝑥⃗, 𝑦) ∈ 𝐷|𝑥⃗(𝐴) = 𝑎}  (3) 

𝐷1 = {(𝑥⃗, 𝑦) ∈ 𝐷|𝑥⃗(𝐴) ≠ 𝑎} = 𝐷 − 𝐷1 

 Step 3: Choosing the most suitable feature and the 

most effective segmentation point: The “features 𝐴” and 

“corresponding value 𝑎”, the features and segmentation 

points that minimize Gini impurity are considered ideal. 

Regarding their assertion, their training set is divided into two 

sub-nodes. 

 Step 4: Utilize a “recursive function” to carry out 

step 2 and 3 for both sub-nodes (m, f). Ultimately, a “decision 

tree” is generated. 

 Step 5: Repeat the specified actions in a sequential 

manner. To construct a Random Forest model, t decision trees 

will be generated over a span of one to four t periods. 

 

2.4. Penguins Search Optimized Random Forest (PeSO-

RF) 

 The Penguins Search Optimized random forest 

(PeSO-RF) is an innovative and sophisticated method for 

forecasting corrosion in oil and gas sites. This advanced 

prediction model combines a random forest algorithm with a 

Penguin Search Optimization (PeSO) approach, resulting in 

a strong and effective system for predicting corrosion. 

Random forests are highly effective in managing intricate 

data sets, but PeSO fine-tunes the hyper parameters of the 

model to improve accuracy. PeSO-RF utilizes a synergistic 

combination to investigate several aspects that affect 

corrosion in gas and oil platforms, including ambient 

conditions, material qualities and operational parameters. By 

incorporating Penguins Search Optimization, the random 

forest model is optimized to achieve optimal performance, 

resulting in more accurate and dependable corrosion 

forecasts. This innovative method shows great potential for 

the oil and gas sector, providing an advanced tool to actively 

control and reduce corrosion risks. As a consequence, it 

enhances safety, operational effectiveness and the lifespan of 

vital infrastructure in offshore settings. Pseudo code 1 shows 

the process of PeSO-RF. 

 

Pseudo code 1: Penguins Search Optimized random forest 

(PeSO-RF) 

class PeSORF: 

def __init__(self, n_estimators, max_depth, 

peso_parameters): 

        self.n_estimators = n_estimators 

        self.max_depth = max_depth 

        self.peso_parameters = peso_parameters 

        self.estimators = [] 

deftrain(self, X_train, y_train): 

for i inrange(self.n_estimators): 

            penguins_population = 

self.generate_penguins_population() 

            tree = DT() 

            tree.train(X_train[penguins_population], 

y_train[penguins_population]) 

            self.estimators.append(tree) 

defgenerate_penguins_population(self): 

defforecast(self, X_test): 

Forecast = [] 

for tree in self.estimators: 

forecasts.append(tree.forest(X_test)) 

        aggregated_forecasts = aggregate_forecasts (forecasts) 

return aggregated_forecasts 

class DT: 

def __init__(𝑠𝑒𝑙𝑓, 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ): 

        𝑠𝑒𝑙𝑓. 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ =  𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ 

        𝑠𝑒𝑙𝑓. 𝑟𝑜𝑜𝑡 =  𝑵𝒐𝒏𝒆 
𝒅𝒆𝒇 𝒕𝒓𝒂𝒊𝒏(𝑠𝑒𝑙𝑓, 𝑋, 𝑦): 

def forecast(self, X): 

def aggregate_forecasts(forecasts) 

 

3. Result  

 The tasks were executed utilizing the Python 

programming language on the Windows 10 operating system. 

The computational capabilities for these activities were 

facilitated by an Intel i7 10th Generation processor, while the 

system was equipped with 32 GB of RAM. A laptop was used 

as the testing device for these processes. In the results section, 

we assessed several outcome indicators, including the R-

squared (R2), mean absolute errors (MAE), root mean square 

errors (RMSE) and mean square error (MSE). Existing 

methods, including gradient boosting regression tree (GBRT) 

[22], light gradient boosting machine (LightGBM) [22] and 

AdaBoost [22], have been employed. Accuracy and Loss 

outcomes are illustrated in (Fig. 2 and 3), respectively. 

 The “Mean Absolute Error (MAE)” quantifies the 

average absolute difference between predicted and observed 

values. The results of MAE are presented (Fig 4). The values 

obtained for AdaBoost, LightGBM and GBRT were 0.430, 

0.576 and 0.552, respectively. The suggested method, PeSO-

RF, outperformed other methods with an average MAE of 

0.326. It demonstrates the superior performance of our 

proposed PeSO-RF method. In order to measure the average 

number of errors between the predicted and actual outcomes 

that provide a numerical evaluation of the accuracy of this 

approach, The “Root Mean Squared Error (RMSE)” is a 

commonly used measure in statistics. The RMSE results can 

be found (Fig. 5). The AdaBoost, LightGBM & GBRT 

models achieved scores of 0.624, 0.814 & 0.799, 

respectively. 
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Figure 1. Flow diagram of the proposed PeSO-RF method (Source: Author) 

 

 

 

 

 

 

 

 

 
 

Figure 2. Outcome of Accuracy (Source: Author) 
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Figure 3. Outcome of Loss (Source: Author) 

 

 

 
 

Figure 4. The result of MAE (Source: Author) 

 
 

Figure 5. The result of RMSE (Source: Author) 
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Figure 6. The result of R-squared (R2 
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Figure 7. The result of MSE (Source: Author) 

 

 

 

 

Table 1. Overview of the dataset 
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Variable

s 

Time 

Unit 

(years

) 

pH Pipe/soi

l 

potenti

al (V) 

Resistivit

y (W m) 

Water 

conten

t (%) 

Bulk 

densit

y 

(g/mL

) 

Chlorid

e (ppm) 

Bicarbona

te (ppm) 

Sulphat

e (ppm) 

Redox 

potenti

al 

(mV)(b

) 

Coatin

g type 

Maximu

m depth 

(mm) 

All 

datasets 

259 259 259 259 259 259 259 259 259 259 259 259 

Minimu

m 

5 4.14 -1.97 1.9 8.8 1.1 0.99 0.99 0.99 2.1 0.3 0.41 

Maximu

m 

50 9.88 -0.42 399.5 66 1.56 672.7 195.2 1370.2 348 1 13.44 

Mean 22.98

8 

0.6.13

0 

-0.877 50.148 23.869 1.303 47.728 19.668 152.965 167.048 0.768 2.024 

SD 9.118 928 0.239 55.919 6.659 0.088 75.159 25.33 168.182 85.484 0.128 2.046 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. The metrics values for existing techniques and our proposed methodology 

 

Methods MAE RMSE R2 MSE 

Adaboost 0.430 0.624 0.895 0.406 

GBRT 0.552 0.799 0.830 0.669 

LightGBM 0.576 0.814 0.804 0.716 

PeSO-RF [Proposed] 0.326 0.428 0.954 0.356 
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 The proposed technique (PeSO-RF) yield superior 

outcomes, with an average RMSE of 0.428. The performance 

of our suggested PeSO-RF method is improved. “R-squared 

(R2)” is a measure of the extent to which an independent 

variable can explain the variability in the dependent variable. 

The range spans from 0 to 1. R2 analysis findings are 

displayed (Fig. 6). The values obtained for AdaBoost, 

LightGBM and GBRT were 0.895, 0.804 and 0.830, 

respectively. The proposed strategy, PeSO-RF, showed 

superior outcomes with an R2 value of 0.954. It demonstrates 

a significant improvement in the performance of our 

proposed PeSO-RF approach. 

𝑒𝑗,𝑖,𝑟
𝑓

= 𝑒(ℎ𝑗,𝑖,𝑟
𝑓

)   (4) 

      

 The “Mean Square Error (MSE)” is a statistical 

measure that quantifies the average of the squared differences 

between predicted & actual values. A metric offers an 

arbitrary measure of the precision for a model, where smaller 

numbers signify superior performance. The results of the 

MSE analysis are shown in (Fig. 7). The results showed that 

GBRT, AdaBoost and LightGBM had respective values of 

0.669, 0.406 and 0.716, respectively. The PeSO-RF method 

demonstrated superior results, as evidenced by a mean 

squared error (MSE) value of 0.356. Our proposed PeSO-RF 

technique exhibits a substantial enhancement in performance. 

Table 2 displays the metric values (MAE, RMSE, R2 and 

MSE) for existing approaches and our suggested method.  

 

4. Conclusion 

 Accurate corrosion prediction in gas and oil 

platforms is crucial for improving structural integrity and 

ensuring safety. In this work, Penguins Search Optimized 

Random Forest (PeSO-RF) was introduced as a unique 

approach for improving the accuracy of corrosion rate 

prediction for oil and gas platforms. The suggested approach 

was executed utilizing the Python programming tool. To 

evaluate metrics such as MAE, RMSE, R2, & MSE, our 

proposed methodology outperforms existing methods. The 

computed values for RMSE, MAE, R2 & MSE were 0.428, 

0.326, 0.954 & 0.356, respectively. A significant need for 

comprehensive corrosion data is one of the limitations, 

making it less applicable in situations where datasets are 

limited. The future involves improving PeSO-RF by 

incorporating Internet of Things (IoT) technology to obtain 

real-time data. Such information will be combined with 

advanced corrosion models and utilized for continuous 

learning. 
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