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Abstract 

 

Metal recovery through bioleaching is a crucial aspect of sustainable resource management. The bioleaching process is 

acknowledged for its eco-friendly nature, but its efficiency is contingent upon intricate interdependencies among numerous 

variables. Existing bioleaching design approaches need more precision to optimize metal recovery efficiently. To develop a machine 

learning framework for the design of the bioleaching process by using Gradient Butterfly fused conditional Random Forest 

Regression (GBF-CRFR) integrates gradient boosting with dependent random forest techniques to create a robust predictive model. 

This approach leverages the strengths of both methods, allowing for the capture of complex dependencies and non-linear 

relationships in the bioleaching process variables. Collect the metal recovery dataset that contains density (PD), incubation 

temperature (T), percentage of energy substrates (SC) and pH control of the bioleaching fluid. The proposed method is compared 

with existing methods in terms of Root Mean Squared Error (RMSE) value is 0.6722, R square (R2) value of 1.2142 and Mean 

Absolute Error (MAE) value of 0.2529. The findings underscore the potential of GBF-CRFR in advancing sustainable and efficient 

practices in bio hydrometallurgy. 

Keywords: Metal Recovery, Bioleaching Process, Machine learning, Gradient Butterfly fused conditional Random Forest 

Regression (GBF-CRFR)  
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1. Introduction 

 The growing need for effective and sustainable 

methods of recovering metals has generated curiosity about 

utilizing cutting-edge technology like machine learning (ML) 

[1]. To improve the bioleaching process, a bio 

hydrometallurgical technique recognized for its promise in 

removing metals from ores, the article presents a unique 

machine learning framework [2]. To improve and expedite 

metal extraction, lead to more resource and environmentally 

efficient methods, by incorporating ML into the 

conceptualization of bioleaching processes [3]. 

 

1.1. ML-Enhanced bioleaching 

 Microorganisms are used in the microbially aided 

process of bioleaching, which recovers metal from ores and 

waste from industries. Bioleaching process design has relied 

on manual optimization and empirical methods [4]. The 

constant change of microbial interactions and the intricacy of 

biological systems pose difficulties in attaining optimal 

circumstances for metal recovery. Acknowledging these 

difficulties, the use of machine learning offers a data-driven 

strategy for simulating complex interactions, resulting in 

enhanced process performance and design [5]. 

 

1.2. Importance of Bioleaching 

 Because bioleaching was less damaging to the 

environment, it can be used to extract metals from low-grade 

ores, which has made it more widespread [6]. Improvements 

in bioleaching procedures can have a significant impact on 

environmentally friendly mining methods. Thus, it is critical 

to investigate cutting-edge technologies like machine 

learning for accuracy and productivity in design [7]. To 

provide a machine-learning architecture specifically designed 

for the biological leaching process, highlight its potential to 

transform metal recovery. The research [8] used hybrid 

models to recover metal from coal fly ash, therefore 
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examining the depletion of metal resources and 

environmental concerns associated with solid waste 

management. The proposal of a unique Metal Recovery 

Potential indicator highlighted the DAT sample's potential. 

Certain drawbacks underline the necessity of sustainable 

development of specific datasets, computational complexity, 

possible oversight and a need for more environmental 

thinking. With the use of artificial intelligence models and 

response surface methods, the research [9] optimized enzyme 

metal bioleaching from abandoned smartphone PCBs. The 

findings indicated high rates of metal extraction and the 

possibility of managing e-waste sustainably. Constraints 

include the bio-Fenton method's intricacy and its specificity 

to PCBs found in cell phones. The research [10] addressed 

bioleaching as an environmentally friendly technique for 

extracting precious metals from recyclable materials, 

assessing their efficacy and emphasizing elements like less 

testing and valuable designs. It identifies areas that require 

more investigation by highlighting limits, such as waste-

specific issues and the intricate nature of solid waste 

mixtures. To enhance recovery of metal from discarded 

circuit boards are printed from cell phones, the study [11] 

used Penicillium as a simplicissimumin an inflatable column 

bioreactor. Outstanding recoveries of Cu and Ni were 

obtained using the approach; however, scaling up presents 

issues as well as microbe specificity. 

 The study [12] maximizes the gold recovery and 

silver from electronic waste by using Minitab software and 

response surface methods. The highest gold recovery 

(62.40%) was obtained by Bioleaching with C. violaceum, 

emphasizing the importance of glycine content, pulp density 

and oxygen concentration. There are several drawbacks, such 

as organism specificity and the complexity of e-waste 

composition. The research [13] created an environmentally 

friendly biotechnological method for separating copper and 

silver from waste deposited by electrolysis components while 

attaining high recovery rates. However, issues with 

scalability, metal-specific attention and financial viability 

need to be resolved. The article [14] states that non-biological 

reasons are the primary hindrance to the industrial biomining 

process's underutilization of bioleaching. For operations to 

remain economically viable, it emphasizes the necessity of 

process design enhancements that focus on sluggish 

subprocesses. To extract value from waste materials and 

mineral deposits using heap bioleaching, they proposed both 

active and passive procedures; nevertheless, more research 

and validation are required to address practical issues. With 

the goal of lowering the number of hazardous metals and 

lessening the effects on the environment, the research [15] 

proposed a bio-hydrometallurgical approach for extracting 

gold and nonferrous metals from old pyritic floatation tailings 

and metallurgical slag. The method, which combines ferric 

leaching with microbial consortia bioleaching, has the 

potential to be advantageous for the economy and the 

environment. With an emphasis on low-grade PCBs, the 

research [16] assessed the viability of bioleaching PCBs 

utilizing acidophilic bacteria for base metal recovery. The 

results demonstrated the benefits of colonization, commercial 

application and microbial adaptability; nonetheless, issues 

such as acid consumption require resolution. Optimization, 

thorough assessments and scaling up are essential for 

economic viability. The research [17] comparing the 

suggested technique to competing methods, it was more 

favourable for precise and dependable forecasts since it has a 

reduced RMSE, suggesting higher accuracy in forecasting 

maximum metal recovery. It focused on difficulties with tank 

biological leaching at Mondo Mineral and the 

Terrafamemine, addressing concerns with the amount of 

arsenic in sulphide concentrate. The results demonstrate the 

flexibility and feasibility of bioleaching techniques for 

complicated mineral deposits and concentrates, but they call 

for more research into the financial implications and scaling 

issues. The study [18] demonstrated the sustainability of the 

bioleaching potential of native Bacillus sp. ISO1 for metal 

recovery. The best precursor was found to be glycine and the 

addition of methionine increases the generation of cyanide 

lixiviant, suggesting the possibility of large-scale industrial 

operations. They highlighted the flexibility and viability of 

tank and heap biological leaching methods for complicated 

ore bodies and concentrates. It examined at the practical 

implementation of these methods for nickel and cobalt 

recovery from Selphie ores and concentrate in Finland. 

 The article was divided into four sections: Materials 

and Methods; Results as well as Discussions; and Conclusion. 

It aims to provide a systematic exploration of bioleaching 

process design using the GBF-CRFR framework. 

 

2. Materials and methods  

 For accurate metal recovery prediction, GBF-CRFR 

combines probabilistic random forest regression with 

gradient butterfly optimization. By combining the benefits of 

conditional tree structures and gradient information, the 

hybrid model improves accuracy in single-paragraph 

scenarios. The suggested approach's framework is depicted in 

Figure 1.  

 

2.1. Gradient Butterfly fused conditional Random Forest 

Regression (GBF-CRFR) 

 By combining predictions from many ML 

algorithms, Conditional Random Forest Regression (CRFR), 

a ML supervised technique, use collaborative modelling to 

provide forecasts that are more reliable. When it comes to 

Optimal Metal Recovery prediction, CRFR builds an 

extensive number of decision trees during training. The 

average of these trained trees' forecasts determines the Metal 

Recovery output. A CRFR exhibits high prediction accuracy 

in a short training period. The primary advantage is an 

increase in test accuracy for metal recovery forecasts, 

together with a decrease in the expenses related to training, 

storing and retrieving conclusions from various models. This 

method creates numerous decision trees, each of which runs 

independently of the others, from concurrent datasets. For 

forecasting maximum metal recovery, the resultant CRFR 

model is reliable and accurate. The ℎ stands for the number 

of independent regression trees that were built with the metal 

recovery data input vector 𝑦. 𝑘ℎ(𝑦) is the mean prediction of 

metal recovery obtained from ℎ regression trees. The 

following equations (1) and (2) are used to get the mean 

squared error for out-of-bag metal recovery data. 

CRFR Prediction =
1

4
∑ 𝑘ℎ(𝑦)ℎ

ℎ=1   (1) 

𝑀𝑆𝐸𝑂𝑂𝐵 =
1

𝑛
∑ (𝑥𝑗 −𝑛

𝑗=1 𝑥𝑗𝑂𝑂𝐵̅̅ ̅̅ ̅̅ ̅)2  (2) 
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 To create forecasts and develop a model, the CRFRis 

utilized for a labelled training set that is intended for metal 

recovery predictions. To control variation, the technique 

combines the bagging principles with a random parameter 

selection process for decision tree construction. The capacity 

of the CRFR technique to intuitively determine the 

significance of variables in both regression and classification 

scenarios is a significant benefit. To locate possible partners 

and food sources, butterflies depend on their sense of smell. 

Every butterfly releases a fragrance (fragrance,f) that other 

butterflies can detect the metal recovery. When it involves 

metal recovery optimization, the butterfly, in its optimal 

posture, emits a more potent scent. The fragrance is designed 

to be consistent with the fitness value (J) expressed in 

equation (3). 

 

𝑓 = 𝑑𝐽𝑏     (3) 

 The exponentiation value for power is represented 

by a, the stimulus intensity is indicated by J and the sensory 

component of metal recovery is represented by d. b is a 

significant parameter that affects how rapidly the method 

converges. Its values range from zero to one. Both of these 

factors have a considerable influence on the algorithm; 

therefore, the value of d is quite significant. With the position 

of the particle as an input for optimization, the stimulus 

intensity is calculated by assessing the metal recovery from 

the objective function. Some butterflies in the population 

recognize the most alluring scent during the exploitation 

period and change their location accordingly. An amended 

stance is the result of this process and it can be stated as 

follows: equation (4). 

 

𝑦𝑗
𝑡+1 = 𝑦𝑗

𝑡 + (𝑞2ℎ∗ − 𝑦𝑗
𝑡)𝑑𝐽𝑏         (4) 

 

 The most effective metal recovery technique found 

worldwide during the iteration is represented by h^* in the 

case, while r is a randomly generated value between zero and 

one. The population's surviving butterflies wander at random, 

making up the exploration stage. The following equation (5) 

characterizes the movement. 

 

𝑦𝑗
𝑡+1 = 𝑦𝑗

𝑡 + (𝑞2𝑦𝑗
𝑡 − 𝑦ℎ

𝑡 )𝑑𝐽𝑏 (5) 

      

 Here 𝑦𝑗
𝑡 and 𝑦ℎ

𝑡  represent the locations of two 

butterflies in the same swarm and 𝑞 are an arbitrary value 

between zero and one. Based on the chance of a switch (𝑞) 

value, a random decision is made to move between the search 

and extraction phases. 

 

3. Result and Discussion 

 Examining different aspects of metal recovery data 

is essential when using machine learning algorithms so that 

statistical analysis can be performed to find trends and 

patterns. A statistical description of the input variables and 

dataset responses is shown in Table 1. A total of 29 samples 

comprised the dataset [19], which was used for modelling. 

Data sampling was made less complicated by a random 

sampling technique that divided the data into three categories: 

training, testing and validation. Due to dataset restrictions, 

this research employs an 80% training to 20% testing split, 

whereas the standard break is 60% training to 40% testing and 

validation. The dataset has all the data. Density (PD), 

incubation temperature (T), percentage of energy substrates 

(SC) and pH is regulator of the bioleaching fluid. The yield 

proportions of zinc and magnesium are the two response 

variables included in the output layer. 

 

3.1. Analyzing hyperparameter tuning for GBF-CRFR 

 A crucial parameter for GBF-CRFR is the number 

of estimators, Figure 1 shows the tuning technique, with 

emphasis on MAE and MSE. The investigation indicates that 

the quantity of forecasting has a significant outcome on MSE 

and MAE. However, when modelling Figure 2 (a) and (b) Mn 

and Zn (c) and (d), respectively, the best values of the 400 and 

200 estimators were found. 

 

3.2. Predictive Capability of GBF-CRFR Modelling for Zinc 

and Manganese  

 Regarding Zn, there are discrepancies as the 

expected values show distribution around the diagonal line. 

The objective is for the predicted data points in plots to 

compare actual and predicted values to connect with the 

diagonal line strongly. Under forecasting is represented by 

points below a diagonal while over forecasting is indicated by 

points above the diagonal. As compared to the Zn model, the 

Mn model predictions produced by the GBF-CRFR model 

show superior alignment with the diagonal. The difference 

between Mn and Zn data can be explained by the former's 

more minor standard deviation and range. Compared to Zn 

data, linear regression is more successful in explaining the 

variation in the data. The accuracy of predictions of the GBF-

CRFR strategy is shown in Figure 3. 

3.3. Performance Analysis of GBF-CRFR 

 In this section, the suggested strategy is compared to 

the related current methods [20], such as Random Forests 

Firefly Algorithm (RF-FFA), Random Forests (RF) and 

Support Vector Machine (SVM) in matrices of Root Mean 

Squared Error (RMSE), R-squared(R²) and Mean Absolute 

Error (MAE).  

 

• R-squared 

 One statistical measure that is used to evaluate a 

regression model's quality of fit is the R-squared (R²) value. 

R² Measures the percentage of the variation in the variable 

that is dependent (maximum metal recovery) can be 

accounted by the independent variable or predictors in the 

regression model when predicting full metal recovery. As 

demonstrated by Figure 4, its improved performance in R-

squared values shows that the suggested method outperforms 

current approaches in forecasting maximum metal recovery, 

underscoring its essential application in the setting of metal 

recovery prediction. Table 2 represents the comparison 

matrix of RMSE, MAE and R^2. This exceeds the R-squared 

values of the present techniques. The equation (6) for R² is: 

𝑅2 = 1 −
𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 
                   (6) 

Where, 

 In a regression model, the total of squared 

discrepancies between the actual and projected values is 

referred as the total of squared residuals or the total of 

squares.
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Figure 1. Framework of the suggested approach 

 
 

Figure 2. Hyperparameter Tuning for GBF-CRFR 
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Figure 3. Predictions of accuracy GBF-CRFR 

 

Figure 4. Result of R² 
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Figure 5. Graphical representation of MAE 

 

Figure 6. Outcomes of RMSE 
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Table 1. Description of samples 

Run No. pH SC  PD (%) T (°C) Observed Mn  Observed Zn  

1 1.8 28 9 32.5 11.4 9.4 

2 1.8 36 9 32.5 10.9 9.1 

3 2.2 28 9 32.5 10.7 7.9 

4 2.2 36 9 32.5 10.6 6.4 

5 1.8 28 9 37.5 11.6 8.2 

… … … … … … … 

29 2.0 32 10 35 10.8 9.9 

 

Table 2. Outcomes of the study 

 

Methods 𝑹𝟐 MAE RMSE 

SVM  0.3869 7.623 10.6281 

RF 0.9162 4.1174 5.4325 

RF-FFA 0.9817 0.6015 1.8279 

GBF-CRFR (Proposed) 1.2142 0.2529 0.6722 
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• Mean Absolute Error (MAE) 

 The absolute difference is provided by the Mean 

Absolute Error (MAE) metric, which is used to quantify the 

average difference between expected and actual values, 

especially when estimating maximum metal recovery. Figure 

5 represents the result of MAE. The suggested strategy 

achieves a lower MAE than current methods and exceeds 

existing approaches in forecasting maximal metal recovery. 

This means a greater degree of precision in the maximum 

metal recovery prediction, which makes the proposed system 

particularly advantageous for raising the accuracy of top 

metal recovery forecasts. The equation (7) for MAE is as 

follows: 

MAE =
1

n
∑ ⌈Bj − Qj⌉

n
j=1     (7) 

 The quantity of observations is n. Maximum metal 

recovery B_j is the actual value of the parameter that is 

predicted for comment. The expected value for observation j 

is Q_j. 

• Root Mean Squared Error (RMSE) 

 A popular statistic for assessing forecast accuracy, 

uncommonly when projecting maximal metal recovery is 

RMSE. It penalizes more fantastic mistakes more severely 

by measuring the mean difference between the expected and 

real figures, squared. Figure 6 depicts the outcome of RMSE. 

When compared to other approaches, the suggested method 

is advantageous for precise and dependable predictions since 

it exceeds existing methods to forecast maximum metal 

recovery. Its lower RMSE indicates higher accuracy in 

predicting this recovery. The equation (8) for RMSE is as 

follows: 

𝑹𝑴𝑺𝑬 = √
𝟏

𝒏
∑ ⌈𝑩𝒋 − 𝑸𝒋⌉

𝒏
𝒋=𝟏   (8) 

3.4. Irrigation 

 In complicated bioleaching datasets, RF and SVM 

are susceptible to overfitting, which reduces their prediction 

accuracy. Because firefly algorithms are stochastic, RF-FFA 

can have trouble converging effectively. The GBF-CRFR 

improves prediction performance by identifying complex 

linkages and non-linear dependencies, which allows it to 

overcome the drawbacks of conventional techniques. 

4. Conclusion 

 Examine the metal recovery through bioleaching and 

utilize the GBF-CRFR machine learning architecture to 

improve the accuracy of the bioleaching process design. GBF-

CRFR, a robust predictive model that can capture intricate 

dependencies and non-linear connections among bioleaching 

process variables, was developed by combining gradient 

boosting and conditional random forest approaches. The 

suggested method was compared with previous techniques in 

terms of R-squared (1.2142), MAE (0.2529) and RMSE 

(0.6722) utilizing a dataset that included density, incubation 

temperature, % of energy substrates and pH control. The 

outcomes showed how well GBF-CRFR performed, 

underscoring its potential to promote effective and sustainable 

biohydrometallurgical processes. Its shortcomings, such as 

dataset breadth, are acknowledged while appreciating its 

accomplishments. Subsequent investigations ought to delve 

into the enlargement of datasets and the enhancement of the 

model to ensure its broader relevance in enhancing 

bioleaching procedures for varied metal retrieval situations. 
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