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Abstract 

 

Chemical synthesis is a process that involves designing and fabricating molecules or compounds using regulated chemical 

processes. It is essential for creating medications, materials and modifying molecule structures according to desired criteria. 

Modern chemistry, based on chemical reactions and synthesis, has a significant impact on various scientific and industrial 

fields.To predict chemical reactions and chemical synthesis; we established an upgraded slap swarm optimization 

with bidirectional long and short-term memory (USSO-Bi-LSTM). This addresses the challenges in machine learning (ML) 

concerning the prediction of chemical reactions and synthesis. Our approach seeks to mitigate the lack of data that enhances a 

model adaption to the intricate structure of chemical space, and lessen issues related to USSO-Bi-LSTM extrapolation beyond 

training data. By improving data accessibility and refining the model structures, this hybrid approach seeks to increase their 

resilience to the intricacies of chemical reactions and promote an excellent knowledge of chemical processes.We collected 

theUnited States Patent and Trademark Office (USPTO) dataset and extracted features from chemical quantum classifiers 

(CQC).In our study, we employed an evaluation metrics such as True Negative Rate (TNR), Accuracy, and Root Mean Square 

Error (RMSE). The results specify that our proposed method outperforms than other existing approaches, including Long Short-

Term Memory (LSTM), Siamese networks and, Artificial Neural Networks (ANN) representing superior performance across these 

metrics.ML combines chemical reaction and synthesis prediction for precise navigation, efficient optimization, and innovation in 

various fields of science and industry. 

Keywords: Chemical reaction, upgraded salp swarm optimization (USSO), bidirectional long short-term memory (Bi-LSTM), 

machine learning (ML) 
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1. Introduction 

 Chemical reactions and synthesis drive the 

generation and alteration of substances, the central pillars of 

chemistry. Chemical reactions are the backbone of many 

processes in nature and human endeavors, from the delicate 

tango of atoms to the laborious assembly of large molecules 

[1]. Orchestrating these reactions to create new molecules 

with desired qualities is the heart of chemical synthesis, 

which had a profound impact on industries as diverse as 

materials science and medicines [2]. All chemical reactions 

include the breaking and mending of chemical bonds 

between atoms as their primary mechanism. Both the 

burning of a hydrocarbon and the development of a new 

medicine under this type of change [3]. Our understanding 

of the molecular world and tap into its revolutionary 

potential, we must be able to predict and manipulate these 

interactions. To develop and optimize chemical processes, 

chemists have historically relied on empirical knowledge, 

intuition, and years of experience [4]. The introduction of 

ML to the field of chemistry, however, marks a significant 

transition in our modern, information-driven world. This 

confluence provides the prospect of expediting the discovery 

and optimization of chemical processes by using enormous 

databases, computer algorithms, and predictive models [5]. 

This study aims to improve chemical synthesis by utilizing 

ML to enhance precision and efficiency in designing and 

fabricating molecules or compounds through controlled and 

optimized chemical processes. 

 The study [6] provided a data-mining-based, 

interpretable impurity prediction methodology for massive 

chemical reaction datasets. Python and RDK it were used to 

construct a 14-step process that used Reaxysdata.The study 

[7] examined the challenge of predicting the yield of a 

reaction, which helps chemist to choose beneficial reactions 
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with less exploration in a unique chemical region. As a first 

step towards overcoming the difficulty, they proposed a 

few-shot yield prediction-specific attention-based random 

forest model called MetaRF. The study [8] employed a 

specific feature allows the network to select which data to 

remove and save, which facilitates handling of data that is 

necessary for modelling biological-chemical interactions, 

that may contribute to the development of AGEs. The 

research [9] provided Graph2Edits, a comprehensive 

framework for retrosynthesis prediction Motivated by the 

rigid, arrow-pointing formalism of chemical reactions. To 

forecast the alterations to the product graph, Graph2Edits 

use an auto-regressive graph neural network, and then it 

generates the transformation's intermediates and final 

products in the expected sequence. 

 The research [10] discussed the several approaches 

to CRN construction and analysis that may be taken to 

achieve a wide range of scientific goals. They examine the 

ML methods already used to CRNs and outline upcoming 

CRN-ML strategies, describing the technological and 

scientific obstacles that must be fulfilled. The study [11] 

provided ChemCrow, an LLM chemical agent trained to 

perform operations in organic synthesis, drug discovery, and 

materials design. ChemCrow improves LLM chemical 

performance by including 18 tools developed by domain 

experts, and it enables the emergence of new capabilities. 

The study [12] presented the SolvBERT approach, which 

uses the SMILES model of the combination to deduce the 

solute and solvent. Unsupervised learning was used to pre-

train SolvBERT on a substantial collection of computational 

salvation-free energies. 

2. Methodology 

 The study proposed USSO-Bi-LSTM to have 

significant potential for optimizing human chemical 

interactions, improving prediction accuracy and 

convergence speed, and enhancing knowledge and control 

of chemical reactions in humans. We collected the USPTO 

data and extracted features from quantum chemical 

descriptors. Fig 1 shows the block diagram of our proposal. 

2.1. Data collection 

The research made use of Janssen's Reactlake 

response database, which contains datasets from the 

USPTO, Reaxys, Pistachio, and other sources. The data 

were subjected to standardization, aromaticity correction, 

functional group translation, and the use of RxnMapper and 

CGRtools software. The final dataset consisted of 15.5 

million unique reactions, with a bias towards the reactions 

with yields higher than 5%. The primary purpose of the 

dataset for masked language modeling (MLM), which looks 

for the probability distribution of each word in relation to 

the data that surrounds it. A sub-selection of 750,000 

solutions from the Janssen ELN dataset was fine-tuned, 

revealing the inherent separation and role-specific linkage of 

the entities [13]. 

2.2. Feature extraction using chemical quantum classifiers 

 In different molecular contexts, the selected 

quantum chemical descriptors represented the atoms' of 

electrical configurations and chemical reactivity. In the 

screening stage of polar processes, a combination of vectors 

pertaining toorbitals𝑐𝑎𝑡𝑚 and atoms 𝑐𝑎𝑡𝑚are used to create a 

total vector 𝑐𝑡𝑜𝑡 of the descriptors for each atom in the 

reactants. 

𝑐𝑡𝑜𝑡 = 𝑐𝑎𝑡𝑚 ⊕ 𝑐𝑜𝑟𝑏(1) 

 Specifically, 𝑐𝑎𝑡𝑚 stores data on electron densities 

and molecule structures, while 𝑐𝑜𝑟𝑏  stores data on atomic 

and molecular orbitals. Atoms that act as donors and 

acceptors use the vector separately. The total vector 𝑐𝑡𝑜𝑡 is 

defined in the ranking step for both donor and acceptor 

atoms by utilizing𝑐𝑡𝑜𝑡. 

𝐶𝑡𝑜𝑡 = 𝑐𝑑𝑜𝑛𝑜𝑟
𝑡𝑜𝑡 ⊕ 𝑐𝑎𝑐𝑐𝑒𝑝𝑡𝑜𝑟

𝑡𝑜𝑡 ⊕ (𝑐𝑑𝑜𝑛𝑜𝑟
𝑡𝑜𝑡 − 𝑐𝑎𝑐𝑐𝑒𝑝𝑡𝑜𝑟

𝑡𝑜𝑡 )   

      (2) 

 When solving equation (1) for radical reactions, 

only 𝑐𝑎𝑡𝑚was considered. The (𝑌)-number, the 
(𝑅𝑎𝑡𝑜𝑚)charge, and the condensed Fukui functions 38 are 

used in quantum mechanics (𝑐𝑎𝑡𝑚). For every atom in the 

Fukui function, the condensed version provides a local 

index, which may be used to comprehend atomic features 

that associated with electron donation and withdrawal. This 

is made up of three separate signs which is explained by 

equation (3) and (4-5): 

𝑒𝐵
+ = 𝑅𝐵(𝑀 + 1) − 𝑅𝐵(𝑀),  (3) 

    

𝑒𝐵
− = 𝑅𝐵(𝑀) − 𝑅𝐵(𝑀 − 1)  (4) 

𝑒𝐵
0 =

1

2
 {𝑅𝐵(𝑀 + 1) − 𝑅𝐵(𝑀 − 1)}  

 Atomic charge (𝑅𝐵) and total number of electrons 

(𝑀) in a molecule (𝐵) are used in this context. The study of 

natural bond orbitals accomplished qualitative analysis. In 

addition to the first and second neighbor atomic charges, 

this set of descriptors contains the highest and lowest values 

of the condensed Fukui functions, as given by Equation (6-

12) 

max ∆𝐵
𝑚 𝑅 = max{𝑅𝐵 −

𝑅𝐴} (𝐴𝜖𝑚𝑡ℎ𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑒𝑑𝑎𝑡𝑜𝑚𝑓𝑟𝑜𝑚𝐵), (6) 

max ∆𝐵
𝑚 𝑅 = min{𝑅𝐵 −

𝑅𝐴} (𝐴𝜖𝑚𝑡ℎ𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑒𝑑𝑎𝑡𝑜𝑚𝑓𝑟𝑜𝑚𝐵),  

    (7) 

max ∆𝐵
𝑚 𝑒𝑊 = max{𝑅𝐵

𝑊 −
𝑅𝐵

𝑊} (𝐴𝜖𝑚𝑡ℎ𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑒𝑑𝑎𝑡𝑜𝑚𝑓𝑟𝑜𝑚𝐵),  

    (8) 

max ∆𝐵
𝑚 𝑒𝑊 = min{𝑅𝐵

𝑊 −
𝑅𝐵

𝑊} (𝐴𝜖𝑚𝑡ℎ𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑒𝑑𝑎𝑡𝑜𝑚𝑓𝑟𝑜𝑚𝐵)  

    (9) 

 To the extent that 𝑊 is positive, negative, or zero 

in equations (6) through (9). 𝑐𝑎𝑡𝑚was based on the nuclear 

magnetic shielding constant, and the steric factor both 

provide details on the three-dimensional molecule 

structures𝑐𝑎𝑡𝑚. To get the steric factor, one uses the formula 

𝑇𝐵 =  ∑ 𝑞𝑊𝐵 exp(−𝑐𝐴𝐵),𝐴   (10) 
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 Where 𝑐𝐴𝐵is the distance between 𝐵 and 𝐴 and 𝑞𝑊𝐵 

is the Vander radius for atom𝐴. 𝑐𝑎𝑡𝑚issymbolized by 

𝑐𝑎𝑡𝑚 = (𝑌, 𝑅𝑎𝑡𝑜𝑚, 𝑒+, 𝑒−, 𝑒0, 𝑚𝑎𝑥∆1𝑅𝑎𝑡𝑜𝑚, … . ) 

    (11) 

 The highest occupied MO, HOMO-1, and HOMO-

2, and the lowest unoccupied MO, LUMO+2 andLUMO+1, 

for𝑐𝑜𝑟𝑏 , is calculated using orbital energies (𝜀)and MO 

coefficients. While an atom's orbital energy doesn't affect 

the orbital's value, it's expected to be a big deal when 

defining the electron donation or acceptance features of 

various compounds. The quantity of electrons for each𝑒0, 

was extracted from the Mulliken population research. The 

direct manifestation of 𝑐𝑜𝑟𝑏  in equation (12) 

𝑐𝑜𝑟𝑏 = (𝜖𝐻𝑂𝑀𝑂,𝐷1𝑇𝐻𝑂𝑀𝑂,𝑅1𝑇 , 𝐷2𝑇𝐻𝑂𝑀𝑂,𝑅2𝑇 , … . ) 

     (12) 

 The atomic number, a discrete quantity was 

excluded from the learning system to maintain high 

prediction accuracy. The sparse descriptors, which include 

null values for 99% of AO data points were eliminated. 

Atomic number-related descriptors were removed during 

atomic pair data production due to the limited possible 

element combinations.  

2.3. Bidirectional long short-term memory (Bi-LSTM) 

According to the paragraph on Bi-LSTM networks, 

to apply them to biological processes is to make use of Bi-

LSTM's strengths in dealing with problems like fading 

gradients and long-term dependencies. As a result of its 

adaptive multiplicative gates, the input gate (IT), the output 

gate (OT), and the forget gate (FT), the Bi-LSTM unit is 

able to control its memory state selectively. This specific 

feature allows the network to select which data to remove 

and save, which facilitates handling of data that is necessary 

for modeling biological-chemical interactions. Fig 2 depicts 

the structure of Bi-LSTM. The bidirectional Bi-LSTM 

boosts the network's capability to collect information from 

previous and succeeding levels with its mix of forward and 

backward hidden layers. For applications involving 

chemical interactions in the human body, this bidirectional 

technique works better than traditional Bi-LSTM in 

sequential modeling. The decision-making process of the 

Bi-LSTM is guided by a sigmoid activation function, which 

given a value between -1 and +1; this line with the study's 

emphasis on chemical processes. The network's ability to 

process and store information pertinent to the intricate 

dynamics of chemical events inside the human body is 

highlighted by this activation function, which helps in 

deciding that cell state data to erase in Equation (13-15). 

𝐽𝑠 =  𝜎(𝑋𝑠𝑊𝑠 + 𝑄𝑗𝐺𝑠−1 + 𝑎𝑗)  (13) 

𝐸𝑠 =  𝜎(𝑋𝑒𝑊𝑒 + 𝑄𝑒𝐺𝑠−1 + 𝑎𝑒)  (14) 

𝑃𝑡 =  𝜎(𝑋𝑝𝑊𝑠 + 𝑄𝑝𝐺𝑠−1 + 𝑎𝑝)  (15) 

 Where 𝑎𝑗 , 𝑎𝑒 , and𝑎𝑝represent the bias gates, 𝑋𝑗 , and 

𝑋𝑒𝑊𝑒 stand for the input weights, and𝑄𝑗 , 𝑄𝑒 , and 𝑄𝑝 

represent the recurrent weights. 𝐸𝑠represents the sigmoid 

activation function, the previous block output is𝐺𝑠−1, and 

the current input is𝑌𝑠.The computed modulated new memory 

𝑊𝑠 is calculated as in Equation (16): 

𝑌𝑠 = tanh (𝑋𝑠𝑊𝑠 + 𝑄𝑠𝐺𝑠−1 + 𝑎𝑠) (16) 

 Where the hyperbolic tangent function is denoted 

by 𝑡𝑎𝑛ℎ (·), and 𝑊𝑠and 𝑄𝑠 stand for the input weight and 

recurring weight, respectively. 

𝑁𝑠, the present memory cell, is calculated as in Equation 

(17): 

𝑁𝑠 = 𝐽𝑠 ⊙ 𝑌𝑠 + 𝐸𝑠 ⊙ 𝐺𝑠−1)  (17) 

 Where ⊙ denotes the action of multiplying 

elements one by one, and 𝑁𝑠−1represents the value of the 

memory cell.As the LSTM unit's output, we get the hidden 

state𝑃𝑠, which is represented in equation (18): 

𝐺𝑠 = 𝑃𝑠 ⊙ tanh(𝑁𝑠)  (18) 

 Lastly, the Bi-LSTM networksof the output signal 

is applied to the classification module to complete the 

classification task. 

2.4. Upgraded salp swarm optimization (USSO) 

 The USSO was developed to address various 

optimization problems. Salps, which are a part of the 

Salpidae family, resemble jellyfish in weight, movement, 

and tissues. They engage in a swarm activity called salp 

chain, they benefit from their ability to use rapid harmonic 

changes for mobility and eating. The USSO mathematical 

model was based on this study to assess salp chains in 

optimization problems. The first step in USSO is to create a 

leader and a follower from half of the population. There is a 

specific function for each salp at the front of the chain, and 

the people following behind them are known as followers. 

The search space size and the number of variables in the 

issue are both represented by 𝑛, and we locate the salps in 

an n-dimensional space. The salps in this swarm are looking 

for food. With this formula, we can update the sales leader. 

𝑤𝑠
1 = {

𝐸𝑖 +  𝑑1((𝑢𝑏𝑖 − 𝑙𝑏𝑖) × 𝑑2 + 𝑙𝑏𝑖)𝑑3 ≤ 0

𝐸𝑖 − 𝑑1((𝑢𝑏𝑖 − 𝑙𝑏𝑖) × 𝑑2 + 𝑙𝑏𝑖)𝑑3 > 0
 

     (19) 

 With 𝐸𝑖standing for the food supply and 𝑢𝑏𝑖 and 

𝑙𝑏𝑖  denoting the upper and lower boundaries, 𝑤𝑠
1represents 

the function of the ruler in the 𝑖𝑡ℎ dimension. The search 

space is maintained by creating 𝑑2 and 𝑑3 from the 

interval[0, 1]. Since 𝑑1 is the most critical coefficient in this 

algorithm and that is essential to maintain the equilibrium 

between the program's exploration and exploitation stages in 

Equation (20-21). 

𝑑1 =  2𝑓
−(

4𝑠

𝑠𝑚𝑎𝑥
)

2

   (20) 

 The maximum number of iterations is 𝑆𝑚𝑎𝑥, and S. 

represents the current iteration. After the leader's position is 

changed, the SSA uses the following equation to update the 

locations of the followers: 

 

𝑤𝑖
𝑗

=  
1

2
(𝑤𝑖

𝑗
+ 𝑤𝑖

𝑗−1
)   (21) 

 When 𝑖 is more than 1, the 𝑖𝑡ℎ follower position in 

the 𝑗𝑡ℎ dimension is denoted by 𝑤𝑖
𝑗
 in Algorithm 1, which 

sets out the latter phases of the SSA. Algorithm 1 represents 

the steps of USSO.
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Algorithm 1: USSO 

Initialize𝑏population𝑤. 

Repeat 

Determine the goal functional for every possible 

outcome 𝑤𝑗 

Revise the optimal salp(𝐸 =  𝑊𝑎) 

Update𝑑1using Eq. (20) 

for 𝑗 = 1: 𝑀do 

if𝑗 ==  1then 

modernize the position of USSO 

else 

Utilize to modify a location Eq. (21) 

End if 

End for 

pending(𝑠 < 𝑠𝑚𝑎𝑥) 

return, 𝐸 

3. Evaluation Metrics 

 Our suggested method USSO-Bi-LSTM, an 

upgraded slap swarm optimization model, is designed to 

forecast chemical reactions and synthesis. The python tool is 

used to simulate the result. The findings indicate that our 

proposed USSO-Bi-LSTM technique performs better than 

current methods, such as Siamese networks [15], LSTM 

[15], and ANN [14], with a significant advantage of these 

criteria. We used assessment criteria including RMSE 

(1.112), Accuracy (98.89), and TNR (90.3) in our research.  

 

Figure 1. Flow of our proposed method (Source: Author) 
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Figure 2. Structure of Bi-LSTM(Source: Author) 

 

Figure 3. Graphical outcomes for accuracy (Source: Author) 

 

 

Figure 4. Graphical outcomes for RMSE (Source: Author) 
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Figure 5. Graphical outcomes for TNR (Source: Author) 

Table 1. Numerical Outcomes of Accuracy (Source: Author) 

Methods Accuracy (%) 

ANN [14] 95.87 

Siamese [15] 97.92 

LSTM [15] 97.77 

USSO-Bi-LSTM [Proposed] 98.89 

 

Table 2. Numerical outcomes of RMSE (Source: Author) 

Methods RMSE 

ANN [14] 1.723 

Siamese [15] 1.512 

LSTM [15] 1.31 

USSO-Bi-LSTM [Proposed] 1.112 

 

Table 3. Numerical outcomes of TNR (Source: Author) 

Methods TNR 

ANN [14] 80.97 

Siamese [15] 84.87 

LSTM [15] 86.97 

USSO-Bi-LSTM [Proposed] 90.3 
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3.1. Accuracy 

 Accuracy refers to the precision and dependability 

of a model in predicting, explaining, or interpreting complex 

biochemical interactions in the human body. It is crucial for 

understanding chemical events like food metabolism and 

neurotransmitter release, leading to improvements in 

pharmacology and tailored treatments. Computational 

models, including algorithms and machine learning 

techniques, are used for precision.Fig 3 shows that the 

graphical results for accuracy,  Table 1 displays the 

numerical results of the accuracy, and our suggested USSO-

Bi-LSTM approach (98.89) beats state-of-the-art algorithms 

like ANN (95.87), LSTM (97.77%), and Siamese networks 

(97.92%). 

3.2. Root Mean Square Error(RMSE) 

 Data analysts’ professionals utilize RMSE to 

evaluate the efficacy of their prediction models. Other 

metrics, such as enzyme kinetics, reaction rates, and 

concentration changes, are more relevant; it must portray the 

intricacies of biochemical interactions in live creatures. The 

RMSE data are shown in Fig 4. Compared to the current 

Siamese networks (1.512), LSTM (1.31), and ANN (1.723) 

approaches, our proposed USSO-Bi-LSTM (1.112) 

approach obtains better RMSE. Table 2 shows the results of 

the RMSE.  

3.3. True Negative Rate (TNR) 

 The TNR is a statistical measure that has no direct 

relevance to the chemical processes occurring in the human 

body, rather it is utilized in ML for problems involving 

binary categorization. Indicating the model's ability to 

identify non-existent responses, it evaluates the model's 

sensitivity to chemical states or interactions. The visual 

outcomes of the TNR is shown in Fig 5. To beat the existing 

ANN (80.97), LSTM (86.97) and Siamese networks (84.87), 

we provide the USSO-Bi-LSTM (90.3) approach, and the 

numerical findings of TNR is shown in Table 3. 

4. Conclusion 

 The field of chemistry has seen a fundamental shift 

with the use of ML to chemical synthesis and reaction 

predictions. ML algorithms have significantly sped research 

and development by analyzing enormous datasets, 

identifying trends, and forecasting reaction times. This 

innovation opens up new possibilities for discovering new 

reactions and modifying reaction parameters in addition to 

increase the efficiency of chemical synthesis. The 

combination of human expertise and ML capabilities could 

lead to creative and sustainable chemical synthesis. As we 

move into the era of intelligent chemistry, one powerful tool 

that can help to understand chemical interactions better is 

the application of ML. With notable advantages in 

evaluation metrics including TNR (90.3), Accuracy (98.89), 

and RMSE(1.112), the suggested USSO-Bi-LSTM strategy 

beats out current approaches of Siamese networks, LSTM, 

and ANN, exhibiting higher performance in a number of 

domains. The development of advanced ML models that can 

handle an intricate reaction mechanisms that integrate to 

multiple chemical data sources, and allow real-time 

prediction for synthesis processes that are accelerated and 

optimized holds the key to the future potential for chemical 

reaction and synthesis prediction.
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