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Abstract 

 

The study demonstrates an accurate method for predicting Absorption, Distribution, Metabolism, Excretion and Toxicity (ADME-

Tox) features of prospective substances are necessary to progress in drug development. Artificial intelligence (AI) and other cutting-

edge technologies are getting more attention as potential means to streamline and enhance ADME and toxicity prediction at the 

molecular level. Quantum computing has the potential to hasten and reduce the cost of the drug development process by improving 

high-volume testing methods and the assessment of compound quantities. Chemical/drug ADME-Tox features are evaluated using 

the proposed method called a Quantum-stimulated Discrete Support Vector Machine (QSDSVM) notation-based string kernel. As 

a first step, we gathered extensive databases of chemical compounds from reputable sources, together with information on their 

ADME-Tox characteristics. After data collection, we used the Robust Scaler in the preprocessing phase to reduce the effect of 

outliers and make the dataset more consistent and stable. Intensive quality checks were performed to clean up the data and make it 

more reliable. Discriminative elements were extracted from the preprocessed dataset using Linear Discriminate Analysis 

(LDA).  Taking use of the quantum computing paradigm, QSDSVM provides increased computational effectiveness and accuracy 

for solving difficult ADME-Tox prediction problems. Our model showed remarkable performance indicators by attaining Accuracy 

(99%), Sensitivity (95%), RMSE (0.349), R2 (0.971%) and MAE (0.105) when compared with other traditional methods. The 

suggested technique demonstrates remarkable accuracy as well as reliability, providing a solid basis for a more effective and 

trustworthy screening procedure throughout the early phases of drug development. 

Keywords: Drug discovery, Artificial Intelligence (AI), Toxicity, Prediction and Quantum computing, Quantum Artificial 

Intelligence (QAI) 
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1. Introduction 

 Drug usage contenders are absorbed such as 

Distribution, Metabolism, Excretion and Toxicity (ADME-

Tox) qualities, which have a major impact on their 

effectiveness and safety profiles, must be evaluated as a part 

of this procedure [1]. The conventional approaches of 

ADME-Tox prediction can contribute to incorrect predictions 

at any stage of the drug development process because they 

fail to capture the complexity of biological systems. A 

thorough knowledge of compound ADME-Tox qualities is 

essential in the ever-evolving area of drug discovery, which 

attempts to identify and create effective therapeutic medicines 

[2]. Predicting how drug candidate’s act in living systems is 

difficult. Thus, modern technology must be included. 

Insufficient ADME-Tox prediction using conventional 

approaches is a common obstacle in the development of 

drugs. This study investigates whether incorporating to 

emerge technologies like quantum computing and artificial 

intelligence (AI) could improve ADME-Tox's predictive 

powers [3].  

 The combination of these technologies holds a great 

promise for moving beyond the limitations of computational 

approaches, leading to a more complete and accurate image 

of how potential drug candidates interact with living 

organisms [4]. Drug development entails several stages, 

including target identification, authentication, hit-to-lead 

maturation, lead refining, molecule identification, assessment 

and testing humans in the clinic [5]. Quantum artificial 

intelligence (QAI) combines quantum mechanical theories 

with machine learning and can be used to approximate 
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interactions between molecules. To better forecast ADME-

Tox outcomes, more precise representation of molecular 

activity could assist. The study represents attention to their 

ability to deal with large datasets and intricate 

interrelationships in molecular structures [6]. Traditional 

methods for estimating ADME-Tox properties suffer from 

two main flaws: they oversimplify chemical interactions and 

we disregard the quantum effects that are crucial in biological 

systems [7].  

 Safety concerns in preclinical and clinical stages 

contribute to drug development failures, with a higher 

incidence observed in the initial phases. Among safety-

related issues, urinary tract toxicity, particularly 

nephrotoxicity, emerge as a major factor in drug development 

setbacks [8]. This toxicity impacted the drug candidates at 

various stages, is linked to the intricate metabolic and 

excretory functions of the urinary system. Addressing and 

mitigating these challenges is crucial to enhance the success 

rates of drug development endeavors [9]. Predictive modeling 

in the pharmaceutical industry is ripe for disruption and QAI's 

arrival might be the catalyst for a paradigm shift. Using 

quantum physics and innovative machine learning (ML) 

methods, QAI has the ability to expand beyond the confines 

of conventional computing and provide new light on the 

complex interaction between chemical structures and 

biological reactions [10]. This study aims to showcase the 

feasibility and effectiveness of QSDSVM in predicting 

chemical/drug ADME-Tox properties. The study [11] 

presented novel applications of AI in the field of drug 

discovery. Virtual screening with structures, ligands, library 

building, high-throughput analysis, reusing old drugs, 

sensitivity analysis, completely new design, chemical 

reactions, synthetic accessibility, adverse drug reaction 

prediction and quantum mechanics are some of the 

approaches taken to the study of drug discovery. The research 

looks at the use of AI methods across industries that focus on 

the intersection between AI and the pharmaceutical industry. 

 The study [12] examined the wide range of AI 

approaches used in drug discovery, emphasizing the role 

played by Artificial Neural Networks (ANNs). They explore 

how ANN was used to create pharmacological compounds 

with novel architectures. They investigated complementary 

AI techniques, such as fundamental computational methods 

used in software applications. In contrast, the output data 

refers to the structural geometry peculiar to that of particular 

molecule. The investigation aims to provide insight into how 

AI and ANNs, plays a part in the drug molecule design and 

optimization process, as well as the way that other 

computational approaches aid in the advancement of the drug 

discovery process. Important techniques for enhancing 

predictive models in molecular property prediction were 

emphasized in this study [13]. These techniques include 

learned representation, multi-task learning, transfer learning 

and federated learning. They highlight several under-

researched studies, but there are some crucial factors that 

include dataset quality, benchmarking methods, measuring 

the efficacy of models and quantifying the certainty with 

which predictions are made. The research [14] provided the 

two main types of ADMET prediction methods. They give an 

organized categorization and description of ADMET 

prediction databases and software. They discuss some of the 

well-studied aspects of ADMT, including PBPK modeling 

and provide a list of relevant applications, a classification 

scheme and a collection of online resources for making 

predictions.  

 The research [15] was to provide the theoretical 

framework for applying computational approaches into 

pharmacologic investigations at various stages of the drug 

development process. By screening millions of potential 

molecules in a computer, in silico approaches that speed up 

the process. Both ligand-based and structure-based virtual 

screening influences the drug development by identifying 

compounds with a high probability of binding to receptors. 

The goal of the Quantitative Structure-Activity Relationship 

(QSAR) and the Quantitative Structure-Property Relationship 

(QSPR) methods is to employ mathematical algorithms to 

predict chemical characteristics interred in descriptors, which 

are chemical properties influencing observable reactions. 

These techniques are crucial for improving medication 

development of efficacy and productivity. The study [16] 

provided a few-shot learning and its implications for the 

pharmaceutical industry. The research demonstrated 

versatility, few-shot education can find applications in 

diverse domains, such as identifying novel drug targets, 

forecasting drug effects and crafting compounds with specific 

biological effects. Its adaptability extends its potential impact 

across various drug discoveries and development settings. 

The research provided an important takeaway on the viability 

coupled with the potential of few-shot learning in key drug 

discovery and development areas.  

 Diverse research findings contribute to a thorough 

understanding of this innovative approach with potential 

applications. The timeline of drug research as well as 

development, drug design methodologies and the 

involvement of AI in the drug discovery process was 

addressed extensively. Both machine learning (ML) and deep 

learning (DL), two innovative techniques, are extensively 

analyzed. The medical field has been impacted by big data 

analysis, as seen by the case studies presented [17]. Because 

so much of information exists about possible new medication, 

the drug discovery process has entered the big data paradigm. 

The development of new AI techniques for implementing 

unique models in response to the dynamic, heterogeneous and 

large pharmacological datasets is at the core of this shift. 

Modern AI methods, such as deep learning (DL) and pertinent 

modeling studies provide novel techniques for assessing drug 

candidates' effectiveness include safety using big data 

modeling along with analysis [18]. 

 

1.1. Key Contribution 

• The research indicates that QAI approaches represent 

paradigm advancement in ADME-Tox prediction, 

providing up the possibility  y to more accurate, cost-

effective and time-efficient drug development 

procedures that could change the drug industry as we 

recognize it. 

• This paper presents a quantum-inspired technique, the 

QSDSVM, demonstrating how quantum computing has 

the potential to improve the accuracy and efficiency of 

ADME-Tox prediction in drug development. 

• Utilizing current approaches such as Robust Scaler 

normalization and LDA for feature extraction, the 

research boosts the accuracy of defining chemical/drug 

characteristics, leading to more dependable predictions 

in toxicity assessment. 
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• The QSDSVM assessment shows impressive 

performance measures, such as a high Accuracy of 99%, 

Sensitivity of 95% and low RMSE, R2 and MAE values, 

proving its resilience coupled with efficacy in predicting 

ADME-Tox features. 

2. Methodology 

 The approach integrates preprocessing methods like 

Robust Scaler normalization and LDA for feature extraction 

with a string kernel based on the QSDSVM paradigm. 

Optimizing tasks using quantum algorithms allows for more 

accurate ADME-Tox prediction by better managing 

complicated datasets and capturing subtle correlations 

between characteristics. Fig. 1 depicts suggested methods. 

 

2.1. Dataset 

 Multitask Graph Attention (MGA) for making the 

most of existing toxicity data. MGA allows for regression and 

classification in toxicity prediction simultaneously. MGA is a 

possible approach for improving the quality of toxicity data 

by making optimal use of existing information, therefore 

resolving problems related to limited data in toxicity 

prediction [19]. To evaluate MGAs data usage skills, compare 

the predictions of 31 toxicity datasets using single-task and 

multitask techniques. On 17 of the 18 tasks examined that the 

multi-task predictions showed considerable improvement 

over the single-task predictions, whereas on the remaining 

task, the multitask predictions fared poorly. 

2.2. Data preprocessing using robust scaler 

 The Robust Scaler distinguishes itself by adopting a 

novel method that deviates from traditional scaling 

approaches. Conventional methods using the min-max range, 

this scaler employs the interquartile range (IQR) that 

enhances resilience against outliers. During scaling, the 

Robust Scaler excludes the median and adjusts data based on 

the IQR, which represents the span between the first quartile 

(25th quantile) and the third quartile (75th quantile). It is 

denoted as〖 IQR〗_(1,3)  (X), this robust scaling technique 

captures data that spreads in the inter-quartile range, making 

it strong in scenarios where outliers can distort the scaling 

process. This statistical measure provides insight into the 

dispersion of values in the central 50% of the data 

distribution, which offers a robust indication of variability 

while mitigating the influence of extreme importance in 

Equation (1). 

 𝑹𝑺(𝑿𝒊) =
(𝑿𝒊−𝒎𝒆𝒅𝒊𝒂𝒏 (𝑿))

𝑰𝑸𝑹𝟏,𝟑 (𝑿)
   (1)

       
2.3. Feature extraction using Linear discriminate analysis 

(LDA) 

 A LDA reduces the complexity of the problems, 

which increases the generalizability of the mean classifier and 

reduces the processing time, as described in Equation (2). The 

transformation matrix 𝑆6 transforms a map from a d-

dimensional input space 𝐹𝐺 to an m-dimensional aspect 

space 𝐹𝑁. 

 

𝑉:  𝐿𝑠 → 𝐿𝑚𝑚 < 𝑠    (2) 

 The LDA can eliminate features by linearly 

translating the production space into the participation space. 

Both classifiers are constructed similarly, with minor 

exception towards the end. The dimension 𝑑 within-class 

covariance square matrix is defined by the following 

formula  W𝑐   in Equation (3-9) 

U𝑣 =
1

𝑛
∑ ∑ [(𝑍𝑖)𝑗 − 𝑚𝑗]

𝑚𝑗

𝑖=1
2
𝑗=1 [(𝑍𝑖)𝑗 − 𝑚𝑗]

𝐶
(3) 

 

 When the class 𝑖 denotes a signaling vector, 𝑛𝑖 is 

available. When tagging an event, information is divided into 

non-occurrence zones and occurrence areas. 

 

𝐶𝑂 =
𝑛1

𝑛
(𝑚1 − 𝑚)(𝑚1 − 𝑚)𝑐 +

𝑛2

𝑛
(𝑚2 − 𝑚)(𝑚2 − 𝑚)𝑐

       (4) 

     

 The whole set of parameters is represented by the 

vector 𝑚. LDA seeks a 𝑉 ∗ 𝑚 transformation matrix 𝐺 that 

equalizes the variance across classes while maximizing the 

variation between categories. 

 

𝑊𝑂 =
𝑚1𝑚2

𝑚2
(𝑛2 − 𝑛1)(𝑛2 − 𝑛1)𝑉  (5) 

    

 Due to its reliance on one vector (𝑛2 − n1), 𝐶𝐵has 

rank 1. Furthermore, the level of VU
−1𝐶𝐵 is equivalent to one 

person, even if W𝐶has an inhabited group. There is a single 

nonzero eigen-value. 

𝑃1 =
𝑈𝑉

−1(𝑚2−𝑚1)

‖𝑈𝑉
−1(𝑚2−𝑚1)‖

    (6) 

 The mapping function creates the output vector 𝑈 

and the eigenvector has the capability of a vector 𝑚2 − m1 as 

well as requires a single property. 

 

𝐻 = 𝐸1
𝐶𝐻 = (𝑚2 − 𝑚1)𝐶𝑈𝑉

−1  (7) 

       

 Equation (9) illustrates the action of generic 

function. Due to the correlation component 𝑊𝑐
−1 not 

included, the process can be expressed as follows. 

 

𝑊 = 𝐴𝑍 = 𝑈(𝑚2 − 𝑚1)𝑡𝑍  (8) 

      

 However, there must be LDA classification before 

inverting the covariance matrix𝑡𝑍 which yields an 

unconditioned matrix.  

 

UvI = 𝑈𝑉 + 𝛿𝐼    (9) 

 The dominance of a single large numerical feature in 

an analysis or model can be avoided by ensuring that the 

characteristics are of the same size. Normalization assists 

with extremes and makes the data more consistent, both of 

which are important for distance-based algorithms. In this 

case, the classification approach is known as a regularized 

LDA. 

2.4. Predictive model for Quantum Stimulated Discrete 

Support Vector Machine (QSDSVM) 

 We present the primary algorithm 1, similar to 

classical SVMs, which performs classification. It's crucial to 

note that actual computations occur upon the calculate 

expression to preserve the exponential-speedup advantage for 

operations on extensive vectors or matrices. For the interim, 

𝛾 is considered as ∞. 

Algorithm 1QSDSVM 
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 Input: n training data points and their labels 

{(w_i,z_i ): w_i∈ 

〖R^m,z_i= ±1 } 〗_(i=1,…n,) Wherez_i= ±1 depending on 

the class to which w_ibelongs. Error bound ∈ and belongs.  

Error bound1-η.γ set as ∞ 

 Find α  ́ that ||α -́ α||≤ ϵ ||α ||with success probability 

at least1 - η, in which α〖=(W^S W)〗^(+ ) z 

 For any givenw ϵ R^m , find its class.  

 In it:Setq,d 

 Sample columns:Sample q column 

indicesj_1,j_2,….,j_q 

 According to the column norm squares(‖W_(*,j) 

‖)^2/ |(|W|)|_E^2) 

 Define 'W' to be the matrix whose sth column is 

 (‖W‖)_E/√q) ( ‖W_(*,j) ‖/W_(*,j))Define B^'=〖W'

〗^S W' 

 Sample rows: t ϵ [q]niformly,and then sample a row 

index i distributed as (|W_it^' |^2 〖/||W_(*t)^' ||〗^2)Sample 

a total number of d row indicesi_1,i_2,…,i_d this way. 

DefineW''whose qth row is 

 〖(||W||〗_E/√d)(W_(is,*)^'/W_(is,*)^' ||) Define 

B^''=〖W''〗^S  W''  

 Spectral decomposition: Calculate the spectral 

decomposition of B'' Denote here by B^''=U''Σ^2 〖W''〗^S  

Denote the calculated eigenvalues by σ_k^1,k=1,…,l 

 Approximate eigenvectors: Let Q=〖W'〗^S W. 

DefineU ́_K= (Q^S U_k^''  /σ_k^2)  k=1,..l,U =́〖(U ́_k)〗
_(k=1),.l 

 Estimate matrix elements: Calculateλ ́_k=U ́_K^S  Z 

toprecision(3∈(σ_k^2)/(16√K))||z|| by 1-(η/4l)  Let v= 

∑_(k=1)^l▒〖(λ ́_k/σ_k^4)〗U_k^'' 

 Find query access: Find query access ofα ́=L ́^S 

vbyα _́o= u^S O ́_(*,o,)  in which Q ́_ji is calculated to 

precision〖ϵl〗^2/4|(|W|)|_E)by Algorithm 1,each with 

success probability1-(η/4 ⌈864/ϵ^2 log(8/η))⌉) 
 Find sign: Calculatew^S W α ̅ to precision(∈/4) ||α|| 

||w||with success probability1-(η/4)Output: The answer class 

depends on the sign.Positive corresponds to 1 while negative 

to -1. Theorem 1 given parameters ϵ>0,0<η<1 and given the 

data matrix w with size  n × m, rank l norm 1, and Condition 

number l, the quantum-inspired SVM algorithm will find the 

classification expressionw^S  Wα for any vector wϵC^m  find 

the classificationexpression〖ϵl〗^2 √n  ||w||Success 

probability higher than1 - η,and time complexity S 

(n,m,l,l,∈,η). 

 

3. Results  

 The effectiveness of the proposed models in 

predicting abilities for ADME-Tox in Drug Discovery that 

assessed through metrics like R-squared (R2), Mean Absolute 

Error (MAE) as well as Root Mean Square Error (RMSE), the 

evaluation includes the application of various ML methods, 

such as XGBoost [20], RRF [20], rbfRVM [20] and 

QSDSVM, on an identical dataset. The comparison aims to 

gauge the performance of these models and their 

computational efficiency in predicting abilities for ADME-

Tox in drug discovery. 

3.1. RMSE 

 Error calculated as the root mean square is an 

abbreviated RMSE. In regression tasks, one common statistic 

is the mean deviation between model predictions and the 

observed data. Models that predict continuous numerical 

values can measure their efficacy using RMSE Equation (10). 

 

𝐑𝐌𝐒𝐄 = √
𝟏

𝐧
∗ 𝐬𝐮𝐦(𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝𝐢 − 𝐚𝐜𝐭𝐮𝐚𝐥𝐢)

𝟐(10) 

 

 Fig. 2 and (Table 1) present the outcomes of a 

comparative analysis between the RMSE values derived from 

the novel methodology and those obtained using the existing 

method. Compared to the current study results, the new 

approach achieves XGBoost (0.412), RRF (0.557), rbfRVM 

(0.448) and QSDSVM (0.349). The cost of our technique is 

less than the current alternatives. This demonstrates that the 

QSDSVM is effective than other methods for error 

evaluation, fault diagnosis and adaptive correction. 

3.2. MAE 

 MAE is used in statistics and ML to measure the 

typical size of mistakes made while making predictions. The 

MAE compares the expected and observed values without 

considering the nature of the errors. In regression tasks; one 

common statistic is the mean absolute deviation between the 

model predictions and the observed values. Model predictive 

abilities for continuous numerical values can be evaluated 

with particular utility of MAE using Equation (11). 

𝑀𝐴𝐸 = (
1

𝑛
) ∗ 𝑠𝑢𝑚 (|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖|) (11)

  The MAE of the suggested technique and the 

standard method are compared in Fig. 3, (Table 2), 

respectively. In comparison, the MAE values for the defined 

processes of employing XGBoost (0.318), RRF (0.192), 

rbfRVM (0.364) and QSDSVM (0.105), respectively. These 

values are lower than the other existing methods. This 

indicates that our proposed strategy is more effective for error 

evaluation, fault diagnosis and adaptive correction. 

3.3. R2 

 R2 is a statistical measure for assessing the extent to 

which a regression model independent (predictor) variables 

that explain the variance in the dependent (outcome) variable. 

The R2 value of a model using regression is a measure of the 

model's accuracy in predicting the desired variable. Fig. 4, 

(Table 3) analyze the R2 values obtained from the 

recommended and conventional methodologies, respectively. 

Contrast with existing method for the R2 values of XGBoost 

for (0.775), RRF for (0.957), rbfRVM (0.948) and QSDSVM 

for (0.971). The proposed QSDSVM algorithms have a lower 

R2 value than the standard methods presently in use. This 

demonstrates that the proposed strategy is superior for 

detecting errors determining their root causes and making 

timely corrections. 

3.4. Accuracy 

 Accuracy is used as a metric of how ML models 

perform on categorization tasks. By comparing the actual 

labels with the desired ones in the input data, it provides a 

quantitative measure of the model predictive efficacy. 
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Figure 1. Proposed methodology (Source: Author) 

 

Figure 2. Comparison of RMSE (Source: Author) 

 

Figure 3. Comparison of MAE (Source: Author) 
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Figure 4. Comparison of R2(Source: Author) 

 

Figure 5. Comparison of Accuracy (Source: Author) 

 

Figure 6. Comparison of sensitivity (Source: Author) 
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Table 1. Result of RMSE (Source: Author) 

 

Methods RMSE 

XGBoost [20] 0.412 

RRF [20] 0.557 

rbfRVM [20] 0.448 

QSDSVM [Proposed] 0.349 

Table 2. Result of MAE (Source: Author) 

 Methods MAE 

XGBoost [20] 318 

RRF [20] 192 

rbfRVM [20] 364 

QSDSVM [Proposed] 105 

Table 3. Result of R2(Source: Author) 

Methods R2 (%) 

XGBoost [20] 775 

RRF [20] 957 

rbfRVM [20] 948 

QSDSVM [Proposed] 971 

Table 4. Result of Accuracy (Source: Author) 

Methods Accuracy (%) 

XGBoost [20] 86 

RRF [20] 91 

rbfRVM [20] 97 

QSDSVM [Proposed] 99 

Table 5. Result of sensitivity (Source: Author) 

Methods Sensitivity (%) 

XGBoost [20] 87 

RRF [20] 91 

rbfRVM [20] 93 

QSDSVM [Proposed] 95 
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Accuracy is determined by the ratio of correct 

predictions to the total number of forecasts, providing a direct 

metric for evaluating the overall effectiveness in categorizing 

data. 

 

Accuracy =
TN+TP

TN+TP+FN+FP
   (12) 

 Fig. 5 illustrates the superior accuracy of our 

proposed method compared to contemporary techniques. The 

RSO-ARBA outperforms modern algorithms like XGBoost 

(0.86%), RRF (0.91%) and rbfRVM (0.97%). Table 4 

provides a short description of the many ways in which the 

QSDSVM (0.99%) model excels in data categorization, 

demonstrating its superiority to other existing methods. 

3.5. Sensitivity 

 The proposed model's sensitivity depends on its 

ability to isolate each informative subset of a dataset. It can 

be estimated by dividing the fraction of true positive (TP) rate 

by the total number of TPs and false positive (FP) rate. The 

sensitivity is calculated using Equation (13). 

 

sensitivity =
TP

TP+FN
    (13) 

 Sensitivity evaluations of classical models and the 

QSDSVM technique are shown in Fig. 6. Regarding 

sensitivity, the QSDSVM approach is superior to other 

existing methods, as shown in (Table 5). The maximum 

sensitivity for the XGBoost is 0.87%, RRF (0.91%) and 

rbfRVM (0.93%). However, the proposed QSDSVM system 

yielded excellent results, with a sensitivity value of (0.95%). 

4. Conclusion 

 This research introduces the QSDSVM method as a 

revolutionary approach for enhancing the prediction of 

chemical/drug ADME-Tox properties in drug discovery. QAI 

techniques, particularly quantum algorithms, the proposed 

QSDSVM demonstrates remarkable accuracy (99%), 

sensitivity (95%) and performance metrics, including low 

level of RMSE (0.349) and high level of R2 (0.971%). The 

model demonstrates it’s potential for streamlining drug 

development using modern technologies, including AI, 

Robust Scaler normalization and LDA for feature extraction. 

This study describes the revolutionary impact that quantum 

computing having on predictive modeling in the 

pharmaceutical industry, leading to a more precise and 

productive research environment. The integration of QAI 

techniques holds promise for addressing resource-intensive 

challenges in ADME-Tox prediction, fostering a new era of 

informed and accelerated drug development. The study's 

emphasis on hardware-constrained quantum computing 

simulations can lead to inconsistencies between the results 

obtained and those obtained with more advanced quantum 

computers in the future. 
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