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Abstract 

 Biochar has raised a great deal of interest in the research field. The feedstock of biochar commonly from biomass or biowaste 

such as dry leaves and twigs, rice husk, and wheat straw; which are widely available and low-cost. Furthermore, it can be utilized 

to reduce contaminants, carbon sequestration, and soil amendment. The feedstock and synthesis method of biochar affects its 

physicochemical properties and various applications. The production of biochar was generated by thermochemical conversion in 

anaerobic (oxygen-deficient) conditions. Some research have been conducted to produce biochar using pyrolysis, gasification, 

torrefaction, and hydrothermal carbonization process. Biochar can be modified by physical, chemical, and biological methods. Based 

on its variety of feedstock, biochar production methods are categorized into two major types; dry-based method and wet-based 

method. In this study, we itemize efficient production methods of biochar from agricultural waste for consideration. Subsequently, 

we explicate the intended application of biochar in an industrial scale. 
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1. Introduction 

 Green waste is an inscapable by-product, resulted 

from the green public areas preservation, urban parks, and 

agriculture. In this context, we can frequently find it in urban 

areas, office, schools, and universities. Green waste from 

agricultural sector is composed of herbaceous biomass 

consists of tree or plant parts as a residue of garden trimmings 

[1]. According to the waste management data by Direktorat 

Jenderal Pengelolaan Sampah, Limbah dan B3 and the 

Direktorat Penanganan Sampah of Indonesia, the green waste 

such as leaves, twigs, and wood waste produced during 2021 

reached 13.1% of the total waste in Indonesia [2]. Similar to 

other types of waste, this created a major issue that must be 

faced to buttress our society. In this case, utilizing green 

waste for implementation of cost-effective bioenergy 

production can be a potential solution. 

 Biochar has been highlighted by the researchers in 

recent years as the bioenergy products from biomass waste, 

for instance, sugarcane straw [3], acacia tree [4], [5], [6], 
conocarpus [7], Bermuda grass [8], and bunch of forest litter, 

fallen-shredded leaves, twigs and branch cuttings generated 

by urban landscape maintenance or lopping of trees [9], [10], 
[11], [12], [13]. Biochar derived from green waste has many 

advantages for environmental sustainability, such as 

removing contaminants [8], [14], [15], improving soil 

conditions [4], [16], and reducing greenhouse gases[17], 
[18], [19]. The biochar derived from biomass is a highly rich 

source of carbon [20]. The production of biochar has now 

sought the real-world interest nowadays for the effective 

adsorption purposes [21]. Biochar also shows the potential to 

complement solid fuels, while addressing important issues 

related to the environment [22]. Actually, there are still a few 

researchers have conducted studies on biochar from green 

waste, whereas green waste is closely related to daily human 

life. This study is focused on summarizing various effective 

methods for producing engineered biochar from green waste. 

Engineered biochar derived from green waste can be used in 

a variety of sustainable applications which are also useful for 

industrial purposes. 

 

2. Biochar Production Method 

Biochar is characterized as a carbon enriched solid 

product generated by thermoconversion process of organic 

molecules in an oxygen-limited environment, with excellent 

physical and chemical characteristics [8], [23]. It used widely 

in agricultural, environmental, and biorefinery operations 

owing to its decreased density, enhanced stability, and 
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adsorption capacity [24]. Biochar plays a vital role in 

decreasing atmospheric greenhouse gas emissions [24], 
enhancing soil fertility [25], and contributing for soil carbon 

storage [26]. The unique properties of biochar such as wide 

surface area, stability, high porosity and functional group are 

corresponding for various application in worldwide [27]. 
Even more, biochar has rapid and simple production method, 

low-cost [28], recyclability, and environmental safe [29]. 
Biochar overcomes the disadvantage of traditional activated 

carbon’s expensive price [30]. 
The thermoconversion process used for biochar 

production can be either biochemical or thermochemical. 

Biochemical usually use the role of microorganisms during 

the process [31], [32]. Whereas the most widely applied 

process is the thermochemical conversion process. 

Thermochemical conversion of biochar in terms of operating 

conditions and yields can be classified into four: pyrolysis, 

hydrothermal carbonization, gasification, and torrefaction 

[24], [33]. The differences can be shown on the Table 1. 

According to the type of media used during the process, 

biochar production methods can be run with dry process or 

wet process. The dry process here includes pyrolysis, 

gasification, and dry torrefaction. While the wet process 

requires a liquid to the process which are hydrothermal 

carbonization or wet torrefaction. 

 

2.1. Dry Process 

 Pyrolysis is a thermochemical process to convert 

organic matter into biochar, bio-oil, and syngas in an 

anaerobic condition that may be used to treat a wide range of 

biomass-based products at temperatures ranging around 350 

to 900 °C [34], [35]. Overall, the primary mechanism of 

pyrolysis consists of a process of breaking chemical bonds 

from raw materials and releasing volatile compounds in the 

reactor under thermal conditions, which will undergo further 

reactions in the secondary mechanism [36]. Some 

experiments on biochar production using pyrolysis process 

have been carried out by Kaudal [37] using municipal 

softwood garden waste, Bin Ji [38] using fallen Magnolia 

Grandiflora L. leaves, Ben Salem [39] using Date Palm leaf 

(DPL) waste, and Wang [40] using Platanus acerifolia leaves 

as raw material. 

 Since biochar is not the primary product of pyrolysis 

process, the yield of biochar produced depends on the 

temperature, residence time, heating rate, and feedstock 

used[24]. Increase in pyrolysis temperature and residence 

time causes decreasing biochar yield [8]. Biochar produced 

from pyrolysis has comparatively less surface area, low pore 

volume, and less functional groups. Pyrolysis is well known 

for converting biochar into rich carbon products [41], [42]. 
It can be classified according to its operating condition (e.g., 

heating rate and residence time): slow, intermediate, fast, 

flash, vacuum, and microwave pyrolysis [6]. 
 

2.1.1. Fast Pyrolysis 

Fast pyrolysis is commonly carried out at high 

temperatures (550-1000°C) and heating rates (≥200 °C/min) 

[34]. If the addition of biomass or feedstock occurs when the 

reactor temperature reaches a desired level with several 

seconds of residence duration, then it named fast pyrolysis 

[24]. Abdallah et al. [43] has conducted a fast pyrolysis on 

walnut, pumpkin, and corncob samples then exhibit complete 

conversion (dm/dt=0) at lower temperatures than slow 

pyrolysis samples. For example, the biochar obtained after 

fast pyrolysis by steam-based biomass activation of corncob 

residue and coconut shell produce biochar with high surface 

area of 1210 m2g−1 after ash removal [44]. This is convenient 

previous reports that high heating rates promote the 

development of favorable biochar characteristics that support 

gasification. 

A number of fast pyrolysis technologies have been 

widely used, such as fluidized bed systems, systems using 

ablative reactors, and systems using Pyrolysis Centrifuge 

Reactors (PCR) [45]. The high heating rate pyrolysis 

deteriorates natural morphology to increases surface area and 

generates higher micropore volume [43]. Biochars produced 

from fast pyrolysis are characterized by relatively high 

volatile matter contents[46]. Yet, fast pyrolysis produce less 

biochar than other type of pyrolysis. The products by fast 

pyrolysis are 65–75% of bio-oil, 10–20% biochar, and 10–

15% syngas[47]. Since the yield of biochar only up to 20%, 

this process is suggested to produce liquids rather than solid 

biochar[48]. 
 

2.1.2. Intermediate Pyrolysis 

 Intermediate pyrolysis is generally utilized to make 

a balance products between liquid and solid phase. This type 

of pyrolysis operates in between slow and fast pyrolysis 

condition [49]. Intermediate pyrolysis occurs in the 

temperature between 450 and 550 °C while takes 10–30 s to 

produce less biochars than slow pyrolysis [20]. This method 

equipped with a cylindrical tube reactor, cyclone, quenching 

system and electrostatic precipitator[50]. But a fixed bed 

reactor also can be used for this process, as if Ahmed [6] used 

acacia tree to produce biochar with high percentage of carbon 

and hydrogen content which is suitable for energy 

applications [51] with a decent calorific value analyzed by 

SEM-EDX. The biochar produced by intermediate pyrolysis 

commonly applied for energy production or as feedstocks to 

produce different value-added products and chemicals[6]. 

Due to low quantity of reactive tar over the fast pyrolysis, it 

can be used directly in boilers and engines [52]. Moreover, 

the biochar has a brittle texture and less toxic compounds 

[53]. It is suitable for further applications, such as a solid fuel 

or as a soil amendment and/or as a fertilizer. 

 

2.1.3. Slow Pyrolysis 

 Slow pyrolysis exhibited a relative low heating rates 

(<10 ◦C/min) whereas a long residence time (10 min-hours) 

over a wide range of temperature (300-700 °C), accompanied 

with relatively higher yield of biochar compared to other type 

of pyrolysis [54]. The yield of biochar produced in this 

process ranged from 30 to 60% [24], [34]. Biochar from lab-

scale slow pyrolysis [55] has good quality in O/C and H/C 

molar ratio and specific surface even still low. Pyrochar also 

presents a low amount of Polycyclic Aromatic Hydrocarbons 

(PAHs) [55]. In slow pyrolysis, the vapor phase reaction in 

which the pyrolysis steam persists for a long time in the 

reactor at low temperature will continue to increase the char 

yield [48]. Modern SP often takes place in continuous 

reactors, e.g., drum pyrolysers, rotary kilns, or screw 

pyrolysers [45]. 
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 Now with technological advancements, the flash, 

vacuum, and microwave pyrolysis becomes the recent 

techniques used for biochar production. The pyrolysis 

process known due to its extremely fast nature process called 

flash pyrolysis. It is modified form of fast pyrolysis. Flash 

pyrolysis depends upon by which heat and mass are 

transferred across the feedstock along with chemical kinetics 

of the reactions and phase transition behavior of the biomass 

[36]. Moreover, flash pyrolysis has limited application on 

industrial scale because of the reactor configuration in which 

the input feedstock reside for a very short time under the high 

temperature range [24], [49]. 

 In case of vacuum pyrolysis, the process taken place 

in very low pressure between 0.01 and 0.20 MPa and 

temperature range between 450 and 600°C [56]. The vacuum 

(low pressure) conditions are used to remove steam instead of 

cleaning gas [49]. This process does not require any carrier 

gas which is used in most other pyrolysis techniques [57]. The 

rapid removal of organic vapors formed during primary 

pyrolysis also reduces vapor residence time significantly 

which reduces the secondary reactions [49]. This process 

allows the formation of large quantities of pyrolysis oil and 

solid char. In terms of viscosity and calorific value, the 

organic phase formed by vacuum pyrolysis reveals promising 

qualities [58]. 

 While the most recent advancing method in 

pyrolysis known as microwave pyrolysis. In microwave 

pyrolysis, the energy is delivered directly into materials 

within an electromagnetic field[59]. Microwave-assisted 

pyrolysis provides several benefits over traditional pyrolysis, 

including uniform overall heating, fast heating rate, 

volumetric and selective heating [20]. This method produce 

high quality biochar because of dielectric heating in less 

temperature as well as heat energy is transferred and increase 

the calorific value of biochar [24]. The downside of 

microwave pyrolysis is that it requires catalyst as well as 

microwave absorbers to improve the heating [59] and its 

electricity consumption [20]. 
 

2.1.4. Gasification 

 Gasification needs a high temperature (often greater 

than 700 °C). Temperature has key role as it determines the 

production of hydrogen, carbon monoxide, and carbon [24]. 

This process is basically decomposed biomass as carbon 

source into syngas with limited oxidizing agents, including a 

mixture of oxygen (O2), air, steam, and gas [60], [61]. 

Biochar is actually known as the carbonaceous residue of the 

gasification process. Biochar quantity produced from 

gasification process is very much less than other method. 

The mechanism of gasification can be summarized 

into four main stages, which are drying, devolatilization or 

pyrolysis, oxidation, and gasification [56]. Each step cannot 

be separated from the others clearly in terms of temperature 

and pressure [48]. 
 

2.1.5. Dry Torrefaction 

Forestry and agricultural wastes are more suited for 

torrefaction process in which hemicellulose decomposition 

takes place at 240 °C and cellulose decomposition takes place 

above 280 °C [24]. Dry torrefaction is a thermochemical pre-

treatment of biomass consists of slow heating rate (less than 

50 °C/min) at 200 to 300 °C [62]. It is kind of incomplete 

pyrolysis that occurs in lower temperature [24]. Dry 

torrefaction is a typical method to improve the fuel properties 

of lignocellulosic biomass. It can improve biomass as cofiring 

materials for energy generation [63]. The four stages of dry 

torrefaction (Fig. 3) are the heating, drying (includes pre-

drying and post-drying), torrefaction, and chilling phases 

process [56]. 
Similar to other methods, in dry torrefaction produced 

three type of products: biochar as solid product; permanent 

gases including hydrogen (H2), carbon dioxide (CO2), carbon 

monoxide (CO) and methane (CH4); and condensed liquid 

consist of water, organic compounds and lipids[64]. Among 

the three, biochar is the primary product for about 70% mass 

and 90% energy of the raw biomass[64], [65]. The biochars 

by this process present more concentrated combustion range 

and are closer to coal properties [63]. Lee et al.[66] shows 

that biochar from spent coffee grounds through torrefaction 

process has higher resistance against biodegradation and 

thereby can be stored longer. 

 

2.2. Wet Process 

 Hydrochar is a name that refers to the final product 

in the wet process of biochar production. This method occurs 

in the aqueous phase with the addition of water as a medium 

in the production process. Wet processes that have been 

widely developed are wet torrefaction and hydrothermal 

carbonization. Several studies have stated that the two 

methods are very similar due to the operating condition and 

working principle, but there are slight differences between the 

two. 

 

2.2.1. Hydrothermal Carbonization 

Hydrothermal carbonization (HTC) is a new 

technology to convert biomass by contacting the feedstock 

with hot pressurized water into solid rich-carbon material at 

temperatures of 180 – 260 °C[67] which has many chemical 

reactions[68] and then placed inside a sealer reactor [69]. 
The technology of HTC is based on the use of water at high 

temperatures and under-high pressures (subcritical water: 180 

– 373 °C and 1.5 – 22 MPa)[70]. 
In hydrothermal carbonization occurs some 

chemical reactions includes hydrolysis, dehydration, 

decarboxylation (resulting in the realese of CO2), 

demethanation, and aromatization[68]. HTC does not need 

drying pretreatment to minimize the intensive-energy used in 

the drying stage[70], it is essential for producing carbon-rich 

hydrochar by reducing the hydrogen to carbon (H/C) and 

oxygen to carbon (O/C) ratios [24]. The energy density of 

biochar increased with increasing temperature, with higher 

heating values [71]. Some researches found an optimum 

temperature of 250 °C for hydrothermal carbonization of 

waste biomass for the production of biochars for heat 

generation [55], [60], [71], [72]. 
HTC is a low cost and eco-friendly technology in the 

enclosed system without any chemical reagents, but only 

water as a carbonization medium [68]. Hydrothermal 

treatment also offers various advantages for biomass 

conversion including the lack of an energy-extensive drying 

process, high conversion efficiency, and relatively low 
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operation temperature among thermal method [71]. The 

biochar from hydrothermal treatment was composed of more 

alkyl moieties [73]. Hydrothermal biochar can be used to 

remove methylene blue, iodine and copper ions because of its 

high affinity. Jian et al.[74] has been calculated the maximum 

copper removal capacity of rice husk hydrochar at 220 °C 

using Langmuir and Freundlich models which resulting 169.3 

mg kg-1 maximum copper adsorbed in wastewater. 

Furthermore, combination of hydrothermal carbonization and 

a subsequent low alkali modification has proved as an 

effective method to prepare a high-performance adsorbent 

[73]. These results indicate that the main adsorption 

processes of hydrochars are ion exchange and complexation 

[74]. 
 

2.2.2. Wet Torrefaction 

Wet torrefaction is developed from the concept of 

hydrothermal carbonization, invented by the German Nobel 

laureate Friedrich Bergius [64]. It also treats biomass in the 

aqueous phase and pressurised condition (15 – 160 bar) at 

temperature range 175 – 225 °C  for 10 – 60 minute to 

produce 70 – 90wt% of biochar yield[63]. Wet torrefaction 

process shown in Fig. 5 uses subcritical water conditions 

below its critical point of 374 °C temperature and 22.1 MPa 

pressure[65]. The complex reaction in the liquid medium and 

the different extraction efficiency of organics and inorganics 

can be achieved under the optimal wet torrefaction condition 

[75]. 
Yek et al.[63] exhibited that biochar from wet 

torrefaction process has potential catalytic approach to treat 

waste palm shell and generating a higher yield with improved 

properties. In other study, wet torrefaction also affected 

reactivity and structure of PIW-derived biochar more than 

that of POW-derived biochar [75]. Moreover, Jiang et al.[76] 
has been compared dry and wet torrefaction for production of 

pine biochar. It explained that both methods can significantly 

decrease the equilibrium moisture content of torrefied 

products. While the hydrophobicity of the biochar produced 

by wet torrefaction is better than that by dry torrefaction at 

the same temperature. 

 Wet torrefaction produces solids with energy 

density greater than that obtained from dry torrefaction [62]. 
The biochar produced has higher surface area and can realize 

the higher thermal efficiency with lower pollutant emission 

compared to dry torrefaction [75]. Its products exhibit more 

prosperous surface functional groups and higher crystallinity 

[63]. The development of microwave wet torrefaction can 

produce high porosity solid biochar which can be utilized as 

a higher value bio-adsorbent for environmental remediation 

[63]. Microwave wet torrefaction system coupled with steam 

can perform torrefaction and partial gasification 

simultaneously to convert biomass into porosity biochar [63]. 
In spite of the researches about microwave wet torrefaction 

process for biochar production from green waste was scarce, 

this process has been able to convert sludge [29], plant seeds 

and shells [77], or microalgae [78] into high-quality 

biochars. The microwave torrefaction significantly increased 

the energy density of pellets compared to conventional 

torrefaction [63]. Microwave wet torrefaction exhibited as a 

promising method to produce biochat and recorded a catalytic 

torrefactiob with hight heating rate and lower mass yield 

conversion, also present high porous structure [63]. 

3. Physicochemical Properties 

The operating conditions of biochar production 

exhibited obvious influence to its physicochemical 

properties, such as aromaticity, hydrophobicity, polarity, 

porous structure, and crystalline mineral components, etc 

[79]. This variability affects the performance of biochar in 

soil amendment, water and soil treatment, carbon 

sequestration and emission reduction [36]. Overall, biomass 

pretreatment, reaction temperature, heating rate, reactor type, 

flow rate, residence time, pressure, and post-modification 

method of biochar are the main operating parameters that 

affect the physical structure of biochar. For example, biochar 

formed at high temperatures has a large specific surface area 

and high porosity structure; and is rich in surface polar 

functional groups (H/C)[80]. Chiappero et al.[81] concluded 

that among its physicochemical properties, the surface area, 

porosity, hydrophobicity, and alkaline metal contents in the 

ash were the most significant properties of biochar. 

 

3.1. Physical Properties 

 Biochar has been extensively researched for various 

environmental applications due to its physical properties: 

surface area, pore volume, bulk density, and pore diameter 

that indicate the distribution of porous structure and influence 

the activated adsorption sites [23]. The carboxylic (COOH), 

hydroxyl (OH), amine, amide, and lactonic groups are vital 

functional groups on the biochar surface that contribute to its 

adsorption capacity [42]. As well known, biochar with high 

surface area and porosity will have a higher adsorption 

capacity. These physical properties were influenced by 

temperature of the production process. Fig. 7 represent that 

surface area, pore volume and pore size of green waste 

derived biochar increase significantly with increasing 

pyrolysis temperature. In addition, hydrothermal conditions 

of the reaction also related to the escalation of specific surface 

area: the degradation/ depolymerization of hemicellulose and 

cellulose generated the formation of slightly porous structures 

of hydrochars [82]. 
Biochar develops a porous surface during the 

production process due to increased water loss during 

dehydration process [27]. Moreover, the ash content of 

biochar affected by high pressure steam which promotes 

biomass decomposition and resulting in ash accumulation. 

The calorific value and ash content of biochar increases with 

temperature, which is composed of a fixed carbon content 

accompanied by a simultaneous decrease in the oxygen and 

hydrogen content [83], [84]. Ronsse et al.[10] have 

investigated the physicochemical properties of biochar from 

agricultural waste. The biochar produced from green waste 

shows an increase in ash content and fixed carbon content as 

the slow pyrolysis temperature increases. Conversely, when 

the biochar yield reaches 98.4%, it only produces very low 

fixed carbon content of 25.7% and an ash content of 3.6% at 

a temperature of 300 °C. 

 

3.2. Chemical Properties 

 Some factors that may influence the chemical 

properties of biochars include the types of feedstocks, 
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pyrolysis temperature, SSA, and DOC content of biochar 

[85]. Biochar principally contains five elements: hydrogen, 

oxygen, nitrogen, sulphur, and carbon [24]. A study reported 

by Chen et al. [86] compared the chemical properties of 

woody biochar (WB) and pig carcass biochar (PB) using 

method based on Yang et al. . This case shows that WB had 

higher C% and specific surface area than the PB [86]. In the 

other hand, polymerization in hydrothermal carbonization are 

intensified with temperature rise. The produced hydrochar 

becomes more chemical stable. These are detrimental to the 

reactivity of carbon substrate material [82]. In general, 

biochars have neutral to alkaline pH (6.11–10.01) [80]. 

Biochar is generally alkaline and has a high pH value at 

higher operating temperatures [10]. Srinivasan and Sarmah 

[14] have attested this by examining biochar from green 

waste at various temperatures of 350, 450, and 550°C. In the 

experiment, the pH of pyrolyzed biochar at 350°C only 5.3. 

Meanwhile, green waste derived biochar (GWB) at pyrolysis 

temperatures of 450 and 550 °C showed pH value of 5.8 and 

8.4 respectively. This correlation also proved by Méndez[87] 

in the previous studies on sewage sludge biochar production 

and M. Nisar[8] that produced green waste derived biochar 

with the highest pH value of 11.88 from a pyrolysis 

temperature of 800 ℃. This could be obtained by the 

transformation of minerals and metal oxides into alkaline 

media during pyrolysis. In addition, Bin Ji [38] has observed 

a correlation of increasing the pH value of biochar from fallen 

leaves of Magnolia Grandiflor L. ranging from 5 to 12 

enhanced the adsorption capacity of the biochar, as shown in 

Fig. 7. 

 

4. Biochar Engineering 

 Biochar properties can be affected by pre-treatment 

and post-modification during the production process[27]. In 

addition to the influence of the type of raw material and the 

operating conditions, the engineering process of biochar also 

affects its efficiency [88]. Engineered biochar can be defined 

as a carbon-rich solid fabricated from biomass or waste 

materials using thermochemical conversion method 

combined with modification technique such chemical, 

physical, or biological [34].  
 Engineered biochar can becomes a viable, cost-

effective and long-term platform for environmental 

applications, especially for adsorption due to changes in its 

surface area, H/C molar ratio, carbon content, aromatic 

structure, and ash content [88]. Changes in the functional 

portion of the surface facilitate electrostatic interactions, ion 

exchange, and/or complexation mechanisms[88]. 
Engineering biochar has been reported to produce biochar 

with higher specific surface area, adsorption capacity, and 

cation exchange contaminants from wastewater[34]. 
Sugarcane leaf biochar has been engineered by Suwanree et 

al.[89] to reduce biomass burning in the field. A pre-

treatment applied with DAP or PA in the presence of MgO 

produces biochar with slow P release which is controlled by 

the dissolution of Mg2P2O7 crystals formed during pyrolysis. 

There are physical and chemical activation method can be 

used to enhance the biochar physicochemical properties. 

 

4.1. Physical Modification 

 In physical method, enhancing the porosity if 

biochar at high temperature and its specific surface area can 

also be observed. Based on many literatures, parameters such 

as activation temperature and time is directly proportional to 

the porosity growth and pore size distribution[24]. For 

example, the activation using H3PO4 steam conducted by 

Zhang[90] which causes the rate of color removal and total 

organic carbon in Al2(SO4)3 solution by coconut shell derived 

biochar are 96.2% and 93.8%, respectively. Other physical 

activation was also reported by Shakiya et al.[91] to increase 

oxygen-containing functional groups on the surface of 

biochar thereby increasing the efficiency of pollutant 

adsorption. 

Physical modification biochar recognized to 

enhance specific surface area, pore structure with more 

plentiful micropores, mesopores, and oxygen-containing 

functional groups, resulting in a higher adsorption capacity 

for heavy metals, nutrients, and organic pollutants than 

unmodified biochar [92]. Also compared to pristine biochar, 

ball-milled nano-biochar has been reported improved 

physicochemical properties including larger external and 

internal surface area and more acidic surface functional 

groups. Thus, the removal of contaminates was much higher 

than that of bulk biochar [22]. 

4.2. Chemical Modification 

 The chemical method is heating biochar in the 

presence of various types of chemicals and non-reactive gases 

[34] at 450-900 °C [93]. Biochar is impregnated with acidic 

or basic chemicals to oxidize and improve the availability of 

functional groups, cation exchange capacity, and surface area 

[34]. Chemical activation can be carried out through one-step 

or two-step thermal treatment[15]. Char is doped with 

chemicals so that the micropore surface is formed by 

dehydration and subsequent oxidation [48]. 
 Although chemical activation has several 

disadvantages, such as corrosion of equipment by chemicals, 

difficult chemical recovery, and high chemical costs [48], it 
is more preferred because of high efficiency, low 

temperature, higher carbon content, increased surface area, 

and increased microporosity [24]. Yadav and Jagadevan [94] 
has been conducted a research analyzing adsorption 

mechanism of engineered biochar on groundwater. Their 

iron-modified biochar BCF-700 exhibits maximum removal 

efficiency due to thermal stability, specific morphological 

structure, surface functionality coupled with very high 

surface area and the presence of varying oxidation states of 

iron. However, the chemical modification approach is costly 

and lengthy as it often requires extra washing steps to remove 

the excess chemicals that remain [34]. 

5. Application 

5.1. Biochar as Fuel Energy 

 Biochar produced by the pyrolysis method has a 

high calorific value and high carbon content, making it 

suitable for power production and other heat uses [24]. In 

terms of environmental and metallurgical considerations 

biochar which injected in blast furnace tuyeres is a viable 

substitute to coal. The effect of using biochar instead of coal 

in a blast furnace reveal that CO2 emission might be reduced 

by 18-40%[24]. Yan Yu et al.[95] found the comprehensive 

flammability index S was increased to 22.1 and 19.8 for their 
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HT180 and HT220 pellets. The combination of hydrothermal 

carbonization and pelletization is efficient for using discarded 

Ginkgo leaf residue as a solid biofuel due to its high 

durability, minimal water absorption and improved pyrolysis 

performance. The cellulose and hemicellulose contents in 

lignocellulosic biomass enable biochar to replace coal by 

extending its life cycle[29]. Using the FTIR spectrum, Kim 

et al.[70] also confirmed that their biochar produced by HTC 

at 220 ℃ witnesses the change in chemical structure shown 

by its CO bond peaks and potentially applied as solid fuels. 

 

5.2. Biochar as Adsorbent 

 Biosorption defined as the property of certain types 

of biomass (or their derivatives) to bind the selected 

molecules or ions in aqueous solutions [28]. Biochar 

adsorption processes have an advantage over other methods, 

especially because of the simplicity of the procedure and cost-

effective and eco-friendly adsorbent [96]. Since it has wide 

surface area, porosity, and an abundance of functional group, 

biochar is possible to adsorb heavy metal and aromatic 

molecules which will get adhered to surface, eliminating 

pollutants from wastewater and soil [24]. But, the adsorption 

characteristics of biochar depend on the feedstocks used [48] 
and the operating temperature applied during the production 

process. Liao et al.[97] has conducted experiments to 

produce biochar from bamboo, rice husk, and corn cobs at 

different temperature to test the adsorption ability of the 

biochars. It found that the specific surface area and total pore 

volume change with increasing pyrolysis temperature. The 

highest economic value reached by rice husk biochar. 

 Similar research has been investigated by James et 

al.[98] using biochars form rush Juncus effuses for 

minewater remediation. Aromaticity and the specific surface 

area are the two factors that entirely relies on the adsorption 

capability of the pollutants present in water [24]. The 

presence of carboxylic acid and hydroxyl groups on the 

surface of biochar is the main principle behind the heavy 

metal adsorption [24]. Utilizing biochar as adsorbent can 

contributes to minimize the total cost of adsorption and 

increase in oxygen groups in biochar also increase 

contaminant adsorption [27]. 
 Recently, many researchers have studied the 

adsorption mechanism of heavy metal by biochar derived 

from green waste. It has reported that biochar has excellent 

adsorption capacity for heavy metals. Jain et al.[74] 

illustrated in Fig. 9 that the oxygen-containing group on the 

biochar surface are associated with the hydrolysis and 

decomposition of the main biopolymer components in rice 

husks. Therefore, the ion metals in aqueous solution can be 

removed by functional groups through iron exchange and 

complexation reactions. Yin et al. (2022) converted Platanus 

orientalis Linn leaves into an  oxidant-modified biochar and 

showed high performance for Cd2+ chemical adsorption. 

Similar work by F. Liu et al. [100] reported that lotus leaves 

biochar can contributed to the degradation of SMX in 

polluted water bodies. 

 

5.3. Biochar for Construction Industry 

 The world now is looking for a substitute for cement 

for the construction of building to reduce the GHG emissions 

to the atmosphere due to construction. The reduction in 

cement consumption and net negative CO2-equivalent 

associated with production of biochar [101]. When the 

biomass undergoes slow pyrolysis, it reduces the surface area 

of the biochar and the carbon free radicals in it which helps 

in creating a low flammability property of the biochar 

produced[24]. Javed et al.[102]  reported that biochar-based 

cement paste requires slightly more water to produce an 

adequate mixture due to its large surface area. It absorbs more 

water and resulting in a more cohesive mixture. The best 

result of compressive strength test were achieved at a 

replacement rate of 2% by weight of biochar relative to 

cement for biochar-based mortar. 

 Biochar may be an appropriate candidate for the 

production of green concrete. The incorporation of 

agricultural or green wastes biochar into concrete had great 

effects on the compressive and tensile strengths [103]. The 

good mechanical properties was achieved due to their high 

specific surface area and amorphous silica levels. The use of 

biochar in concrete allows agriculture and forestry wastes to 

adsorb carbon instead of releasing the CO2 and methane. In 

this case, it prevents the climate change effects of concrete 

production. According to Tommaso and Bordonzotti [104], it 

is estimated that if only 1% of biochar (by mass of concrete) 

is incorporated in concrete. It can be calculated that roughly 

0.5 Gt of CO2 would be sequestered each year by the concrete 

sink convenient to about 20% of the total yearly emissions of 

CO2 generated by the cement industry. 

 Biochar has low thermal conductivity and chemical 

stability that plays a vital role as suitable material for 

construction [24]. The temperature and feedstock used in 

biochar production process can impact the pore size present 

on the biochar, which is the most important factor of low 

thermal conductivity [24]. Several studies of biochar 

applications using various types of green waste have been 

summarized by Liu et al.[105]. Regarding the long-term 

behavior, the effect of biochar on strength development is 

more visible in compression. An experiments conducted by 

Sirico et al.[106] showed the best improvement was obtained 

during 365 days of dry treatment by the addition of 5% 

biochar, the average increase in compressive strength was 

12%. 

5.4. Biochar for Soil Amendment 

 Biochar is an excellent supplement for agricultural 

soils due to its unique properties. The use of biochar as a soil 

amendment is usually proposed sequentially to increase 

groundwater retention, especially in dry climates that 

experience water scarcity [18]. It has been developed to 

modify soil permeability, moisture content, pH, and size of 

unstable C and N pools in soil and which significantly affect 

soil CO2 emissions [20]. Many studies have also shown that 

biochar can help reduce greenhouse cutting-edge and 

nitrogen losses if applied in agricultural soils [24]. 
Application of biochar to soil can not only storage carbon, but 

also improve the soil quality by neutralizing acidic soil, 

enhancing the CEC of soil, and increasing the activity of soil 

microorganisms [48]. 
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Figure 1. General Concept of Pyrolysis. Adapted from Sanford et al.[111] 

 

 

 
Figure 1. GreenWaste Gasification System[1] 
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Figure 3. Process Diagram of Dry Torrefaction with Heat Integration 

 
Figure 4. Hydrothermal carbonization of Green Waste. Adapted from [27] 

 
Figure 2. Wet Torrefaction Basic Process[65] 

 
Figure 3. SEM images of 400BC, 600BC and 800BC [8] 
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Figure 4. FTIR Analysis of Magnolia grandiflor Biochar [38] 

 

 
Figure 5. Characteristics and production (i.e. activation and modification techniques) of engineered biochar[92] 

 

 

 

 

 

 

 

 

Figure 6. The Mechanism of Ion Exchange and Complexation for Adsorption of Cu2+ on Hydrochars
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Ash in biochar contains hydroxide and carbonate 

functional groups which in dissolution result in an increase in 

the pH value of the soil [85]. Biochar has shown enhanced 

crop production due to the improvement in the chemical, 

physical, and biological qualities of soil [24]. The biochar 

obtained from the copyrolysis of rice husk by Bian et al.[41] 
contained high nutrients. The cultivation of cabbage in their 

country (Brassica chinensis L.) at 0.5%  yield improved 

significantly. As a result of its surface features and basic 

structure, biochar has gained considerable interest in soil 

remediation in agricultural sectors [27]. In a long-term 

experiment on oaks, Tanazawa et al.[107] reported that Pn 

increase in trees grown in biochar amended soil due to 

improvements in physiological activities (i.e., higher 

maximum carboxylation rate and maximum electron 

transport than not amended ones). However, they assumed 

that the effects observed may only help the tree for a limited 

period (tree establishment phase). 

The application of biochar can moderate fluctuations in soil 

temperature by narrowing the temperature range[108]. 
 Biochar also can effectively improve soil structure 

and increase groundwater availability [85] by immobilizing 

both inorganic and organic pollutants by immobilizing both 

inorganic and organic pollutants [109], [110]  due to its high 

specific surface area and cation exchange capacity, porous 

structure, active surface functional groups, and aromatic 

surfaces. Moreover, biochars can react with heavy metals in 

the soil to reduce their mobility and bioavailability through 

physisorption, chemisorption, and precipitation reactions.  In 

addition, biochar effectively reduces metal uptake by plants 

[85]. 

 

 

 

 

 

 

 

 

5.4. Biochar for Electrochemical Energy Storage 

 Carbon-rich materials are commonly used in 

electrochemical energy storage devices, which have high 

electrical conductivity, strong mechanical properties, and 

easy accessibility [60]. The rich functional groups and good 

cation exchange performance of biochar indicated its 

potential as electrochemical materials, such as fuel cell [112], 

supercapacitor [113], electrochemical biosensor, etc [114]. 

Between the conventional thermochemical and capacitor 

batteries, biochar as superconductor has high power density, 

long life and fast charge/discharge capability, which can be 

used as uninterrupted power source in electric vehicles, 

digital communication systems, etc [60]. Engineering the 

appropriate electrode is the key to fully realizing the potential 

of microcarbons in electrochemical energy storage. 

 A biochar produced from biowaste such as wood 

straw, chips, grass, and garden waste at 800 °C [115] showed 

a specific capacitance of 228 Fg-1 at 1 Ag-1 in 1 M H2SO4 and 

a rate capability of ~84.1% when current density increased up 

to 191.9 Fg-1. Intrinsically, the biochar-800 also showed an 

excellent energy density of 7.91 Whkg-1 in current electrolyte 

solution and improved cycling stability 88% capacitance 

retention after 5000 cycles at a high current density of 10 A 

g-1. However, based on the study of Wan [116], the 

electrochemical test results showed that the conductivity of 

biochar decreased along with the lower adsorption capacity 

of biochar to ions. In short, after the biochar participates in 

the catalytic process, the pore structure is not damaged, but 

the surface adsorption capacity decreases. 

 

 

 

Table 1. Biochar Production Methods 
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5.5. Biochar as Catalyst Support 

 Due to high stability and decent textural properties 

such as high surface area and mesoporous structure, biochar 

could be used as catalyst support. Biochar has been used as 

catalyst support in various reaction systems [117]. A biochar 

obtained by steam gasification process applied to support 

nickel catalysts for tar cracking [117] then resulting 6 wt% 

Ni loading catalyst and shows good catalytic cracking 

performance. Compared with other support materials such as 

Cu, Co, K, and Mo, Ni has low cost and low toxicity. Nitrates 

and chloride solutions of Ni, such as Ni(NO3)2 is often used 

as impregnation precursor [118].  
 Most studies have reported that the enhancement of 

catalytic activity by biochar can be achieved by providing a 

stable mesoporous structure. Additionally, biochar could 

contribute to catalytic effects due to the presence of AAEM, 

which could catalyze certain reactions [119]. For catalyst 

support preparation, a wide range of biomass has been used 

covering different types of woody and non-woody biomass 

and interestingly, an attempt using seaweed biomass was also 

reported. In addition, there are some studies used used rice 

husk, corn stalk, and wheat straw for tar cracking [120]. The 

benefit of using biochar as catalyst support is to help improve 

the dispersion of active metal and provide higher metallic 

sites with smaller crystallites to improve the catalytic activity 

and selectivity [119]. One point worth mentioning is to 

further investigate the synergetic effect between metal and 

biochar support. 

 

5.6. Biochar as Catalyst 

 Biochar can play a role as catalysts, which have been 

widely applied in environment [121], energy [122], 

agriculture [93] and other aspects. Its relatively larger specific 

surface area benefits its catalytic activity by providing more 

active site for the reaction. As carbon material, biochars can 

play a role as green and efficient catalysts in advanced 

oxidation processes to remove various organic contaminants, 

as they are chemically stable and can be reused in reaction 

solutions without introducing metal ions [119]. Biochar can 

be easily separated from the catalyst by oxidation to recover 

the precious metal [59]. A study about carbocatalyst applied 

for water decontamination process has been conducted by Shi 

et al.[123] using Preserved Wood Biochar (PWB). They 

exhibits outstanding BPA degradation capabilities. The metal 

compounds, especially Cu metal and biochar in PWB 

dominate the radical and non-radical PMS activation 

mechanisms, respectively [123].  

 However, it should be noted that even without 

introducing any metals from external sources, produced 

biochar might contain some AAEM due to their presence in 

the original raw materials. The most-reported catalytic effect 

is to reduce the tar and increase yield and selectivity towards 

different compounds in the liquid or gas phase of the final 

products [119]. Catalytic pyrolysis of bamboo waste with N-

doped biochar catalyst for phenol products reached 82%, 

while inhibiting the formation of O-species and acetic acid, 

with the release of more CO2 and H2O [124]. Even when 

introduced into the reaction system to function as the catalyst, 

biochar may also show different functions as an adsorbent 

and reactant [119]. The modified surface area and adequate 

mechanical properties allow biochar to adapt to different 

chemical reactor configurations. As one of the common by-

products in biorefinery processes, biochar as a catalyst will 

increase production efficiency, reduce waste generation, help 

maintain economically viable production [118]. 

Economically and environmentally sustainable processes 

were determined for agricultural and food waste containing 

30.1% (w/w) oil for biodiesel production (96.3%) using a 

biochar catalyst [125]. Therefore, the application of biochar 

as a catalyst will not only increase its utilization but also 

encourage the development of various catalysts [59]. 

 

6. Conclusions 

 The diversion of green waste in urban areas to 

biochar seems to be an even better alternative for the 

environmental application. Biochar engineering can be a 

solution to enhance the quality of biochar through improving 

the physicochemical properties of biochar. The dry method 

(i.e. pyrolysis, gasification, and dry torrefaction) and the wet 

method (i.e. hydrothermal carbonization and wet 

torrefaction) have developed in recent years into more 

effective and efficient for various application. In addition, 

there are many factors that can affect the physicochemical 

properties of biochar, such as the type of raw material, 

production techniques, operating conditions, or the method of 

activation or modification. The effect of biochar in various 

applications has been well proven, but further research on 

biochar derived from green waste is recommended to increase 

the commercial value of the use of biochar in the real world. 
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