

International Journal of Chemical and Biochemical Sciences (ISSN 2226-9614)

Journal Home page: www.iscientific.org/Journal.html





# Simultaneous Estimation of Sofosbuvir and Ledipasvir in Human

# Plasma in Bulk Form by RP-HPLC

Shaik Harun Rasheed<sup>1</sup>, CH. Pavani <sup>2\*</sup>, P.V.Pavan Kumar<sup>3</sup>, P.Lavanya<sup>4</sup>, M. Sudha<sup>5</sup>, K. Parameshwar<sup>6</sup>, V. Kavitha<sup>7</sup>

 <sup>1</sup>Professor, Department of Pharmaceutics, Guru Nanak Institutions Technical Campus - School of Pharmacy, Khanapur, Ibrahimpatnam-501506, Telangana, India.
 <sup>2\*</sup>Assistant Professor, Department of Pharmaceutical Analysis, Avanthi Institute of Pharmaceutical Sciences, Gunthapally-501512, Hyderabad, Telangana, India.
 <sup>3</sup>Assistant Professor, Department of Pharmaceutics, Avanthi Institute of Pharmaceutical Sciences, Gunthapally-501512, Hyderabad, Telangana, India.
 <sup>4</sup>Assistant Professor, Department of Pharmaceutics, Avanthi Institute of Pharmaceutical Sciences, Gunthapally-501512, Hyderabad, Telangana, India.
 <sup>5</sup>Assistant Professor, Department of Pharmaceutical Chemistry, Avanthi Institute of Pharmaceutical Sciences, Gunthapally-501512, Hyderabad, Telangana, India.
 <sup>6</sup>Assistant Professor, Department of Pharmaceutics, Guru Nanak Institutions Technical Campus - School of Pharmacy, Khanapur, Ibrahimpatnam-501506, Telangana, India.
 <sup>7</sup>Assistant Professor, Department of Pharmaceutics, Guru Nanak Institutions Technical Campus - School of Pharmacy, Khanapur, Ibrahimpatnam-501506, Telangana, India.

#### Abstract

This study's goal is to assess Sofosbuvir and Ledipasvir in human plasma using the RP-HPLC technology. The separation was performed using a Hypersil (ODS) C18 (4.6 x 250mm, 5 m) analytical column. The mobile phase was a 60:40 mixture of methanol and water. With the help of a UV detector set at 270.0 nm, the eluents were found. The discovered approach produced Sofosbuvir and Ledipasvir retention periods that were determined to be 2.1 and 5.6 min, respectively. ICH guidelines were followed to verify the procedure with regard to precision, specificity, accuracy, linearity, and stability tests. It was discovered that the suggested procedure was practical and reproducible for quantitative evaluation of Sofosbuvir and Ledipasvir.

Keywords: ICH, HPLC, Sofosbuvir, Ledipasvir.

Full length article \*Corresponding Author, e-mail: pavanich.pharma@gmail.com,

#### 1. Introduction

This study set out to develop and validate a simple method for measuring the most commonly used drugs for treating hepatitis C virus (HCV) infection—Human plasma containing sofosbuvir and ledipasvir—in accordance with ICH guidelines.[1, 2] Sofosbuvir is a medication. It is transformed into the potent antiviral compound GS-461203. The viral RNA polymerase, the NS5B protein, uses GS-461203 as a faulty substrate, which inhibits the synthesis of viral RNA. [3, 4, 5, 6, 7] Hepatitis C virus infection can also be treated with ledipasvir. Ledipasvir blocks NS5A, a crucial viral phosphoprotein essential in viral replication assembly and secretion. The FDA authorized the use of sofosbuvir (SBR) and ledipasvir (LDR) together in 2014 to treat HCV. [8, 9, 10, 11, 12, 13, 14, 15, 16] A reliable, straightforward, and verified technique for simultaneously quantifying sofosbuvir and ledipasvir in human plasma must be developed and reported. So, in order to design a quick, simple, and reliable HPLC technique for the drugs sofosbuvir and ledipasvir, as well as to verify it in accordance with the ICH Q2B guidelines for the development and validation of analytical methods, we made an effort to eliminate the shortcomings in the prior methods.

#### 2. Materials and Methods

#### Chemicals:

Hetero Labs kindly provided pharmaceutical-grade Sofosbuvir and Sofosbuvir as a chemical contribution. For this work, analytical reagent grade solvents and chemicals were given by FINER Chemical LTD, Sigma Aldrich (Mumbai), and Lichrosolv (Merck)

#### Instruments:

Symmetry ODS C18 (4.6 x 250mm, 5 m) column used for separation; Lab solutions software was used for monitoring and integrating the output signal; spectrophotometer was a Systronics PC-based 2202 with matching quartz cells, 1 cm.

#### HPLC method development:

#### Mobile phase preparation:

#### A – Methanol

B - pH-balanced (with 0.05% acetic acid) water Degas A and B separately for 5 minutes in an ultrasonic water bath. Filter using a 0.45 filter in a hoover. Then, combine components A and B in an 83:17 ratio.

Diluent Preparation: The Mobile phase served as the diluent.

## Wavelength Selection:

# Ledipasvir and Sofosbuvir sample and standard solution preparation:

Standard Solution preparation:

The stock mixture of sofosbuvir and ledipasvir were made by dissolving the proper quantity into the diluent at concentrations of 1 mg/ml. At 2 to 80C, all of the stock solutions were kept. Sofosbuvir and ledipasvir stock solutions were further diluted with diluent to create standard mixes, yielding final concentrations ranging from 1000ng/mL to 5000ng/mL. Ledipasvir and Sofosbuvir were produced in a typical 1:1 combination with 1000ng/mL each in the diluent.

#### Preparation of sample Solution:

Sofosbuvir and Ledipasvir were extracted from plasma samples using an easy two step liquid-liquid extraction (LLE) process.  $200\mu$ L of plasma and  $500\mu$ L of previously prepared medication solutions were combined with acetonitrile for deprotination, and 20 minutes were spent centrifuging the mixture at 5000 rpm and 40 degrees Celsius. The needed amount of the organic layer was removed, diluted with methanol to 10 ml, and then this solution was added to the HPLC apparatus.

#### Procedure:

The assay's % must be calculated by first injecting  $10 \Box L$  of sample and standard and into the chromatographic apparatus, measuring the sofosbuvir and ledipasvir peak regions, and then using the formulae.

#### **Optimization of Colum:**

At a flow rate of 1.0 ml/min, the best results were achieved using a (ODS) C18 column (4.6 x 250mm, 5 m, Make: Hypersil).

#### RESULTS: Method validation: System suitability study:

Sofosbuvir and Ledipasvir were tested at a concentration of 2000ng/ml in six independent assays to determine the system's efficacy. The % relative standard was computed taking into consideration the theoretical plate, retention period, and asymmetry factor.

• The average Tailing factor for Sofosbuvir and Ledipasvir were found to be 1.197, 1.028 respectively.

- There must be at least 2000 plates in theory.
- Peak tailing should be no more than 2

#### Specificity:

Analyzing blank and reference samples can help identify the selectivity. Selectivity was confirmed at a lower limit of quantification (LLOQ) after analysis of interference in a blank sample

#### Linearity:

For all procedures, a single 5-point calibration curve was created. With the help of linear regression and the least squares approach, the findings were utilized to derive the equation of the line.

#### Procedure for calibration curve:

The injected Sofosbuvir and Ledipasvir concentrations ranged from 1000 to 5000ng/mL, and the extracted plasma samples were then used to produce the appropriate chromatograms. These chromatograms were used to compute each dilution's area under the drug's retention times and curve relative to the reference standard. The concentration and area under the calibration curve were plotted on the x- and y-axes, respectively, to create a useful calibration curve. 1000–5000ng/ml was discovered to be the linearity range. Calculated was the curve's regression equation.

#### Acceptance Criteria:

Each drug's concentration versus peak area should be plotted linearly with an R2 correlation coefficient that is no higher than 0.999.

#### Accuracy:

The accuracy of an analytical procedure is measured by how closely the results of the analysis match the true value. This was determined by conducting recovery trials with known concentrations of standard S and L (50%, 100%, and 150%) as part of the analytical technique. Percentages of success after treatment were derived from this data.



Fig. 1: Sofosbuvir's Molecular Structure



Fig. 2: Ledipasvir's Molecular Structure



Fig. 3: UV-Spectrum of Ledipasvir and Sofosbuvir







Fig. 5: Plasma Chromatogram



Fig. 6: Represents Blank Chromatogram



Fig. 7: Calibration curve for Sofosbuvir



Fig. 8: Ledipasvir Calibration curve

| PARAMETERS                 | CONDITIONS                                                    |
|----------------------------|---------------------------------------------------------------|
| Column(Stationary Phase)   | (ODS) C18 (4.6 x 250mm, 5um,Make:Hypersil)                    |
| Mobile Phase               | pH-balanced methanol and water (83:17) with 0.05% acetic acid |
| Flow rate (ml/min)         | 1                                                             |
| Run time (min)             | 10                                                            |
| Column temperature(°C)     | Ambient                                                       |
| Injection loop volume (µl) | 20                                                            |
| Detection wavelength (nm)  | 270                                                           |
| Drug Retention time (min)  | Sofosbuvir -2.113,Ledipasvir-5.619                            |
| Resolution                 | 3.291<br>9.591                                                |
| USP Plate count            | Sofosbuvir-6717 ,Ledipasvir-15576                             |
| USP Tailing                | Sofosbuvir-1.197,Ledipasvir-1.028                             |

Table 1: Optimized chromatographic conditions

#### Table 2: System suitability Parameters

| Sample Name | Peak area  |            | Retenti    | Retention time |            | No.of theoretical plates |  |
|-------------|------------|------------|------------|----------------|------------|--------------------------|--|
|             | Sofosbuvir | Ledipasvir | Sofosbuvir | Ledipasvir     | Sofosbuvir | Ledipasvir               |  |
| Injection1  | 12747      | 6334       | 2.459      | 7.713          | 6717       | 15576                    |  |
| Injection2  | 12826      | 6342       | 2.139      | 7.695          | 6810       | 15679                    |  |
| Injection3  | 12506      | 6443       | 2.172      | 7.351          | 6721       | 15726                    |  |
| Injection4  | 12341      | 6434       | 2.139      | 7.695          | 6694       | 15567                    |  |
| Injection5  | 12221      | 6376       | 2.172      | 7.351          | 6726       | 15570                    |  |
| Injection6  | 12332      | 6332       | 2.328      | 7.793          | 6754       | 15594                    |  |
| %RSD        | 1.9        | 0.7        | 1.5        | 0.14           | Avg:6737   | Avg:15618                |  |

#### Table 3: Sofosbuvir Linearity results

| S.No | Linearity Level                   | Concentration (ng/mL) | Area  |
|------|-----------------------------------|-----------------------|-------|
| 1    | I (Lower limit of Quantification) | 1000                  | 7078  |
| 2    | Π                                 | 2000                  | 12747 |
| 3    | III(Middle Quality Control)       | 3000                  | 17513 |
| 4    | IV                                | 4000                  | 23091 |
| 5    | V(Higher Quality Control)         | 5000                  | 33062 |
|      | Coefficient of Correlation        |                       | 0.986 |

# Table 4: Linearity results of Ledipasvir

| S.No | Linearity Level                   | Concentration<br>(ng/mL) | Area  |
|------|-----------------------------------|--------------------------|-------|
| 1    | I (Lower limit of Quantification) | 1000                     | 3584  |
| 2    | II                                | 2000                     | 6335  |
| 3    | III(Middle Quality<br>Control)    | 3000                     | 9169  |
| 4    | IV                                | 4000                     | 11963 |
| 5    | V(Higher Quality<br>Control)      | 5000                     | 17383 |
| (    | Coefficient of Correlation        | 0.986                    |       |

# Table 5: Sofosbuvir Accuracy results

| Samuela ID | Concentrat    | ion (ng/mL) |          | 0/ Decomour | Statistical          |
|------------|---------------|-------------|----------|-------------|----------------------|
| Sample ID  | Amount added  | Amount      | Response | %Kecovery   | Analysis             |
|            | ( <b>ng</b> ) | found (ng)  |          |             |                      |
| LQC        | 1000          | 986.6       | 6984     | 98.6        |                      |
| LQC        | 1000          | 989.8       | 7005     | 98.98       | <b>Mean</b> = 98.42  |
| LQC        | 1000          | 977.4       | 6915     | 97.7        | _                    |
| MQC        | 3000          | 3001        | 17514    | 100         |                      |
| MQC        | 3000          | 2858.16     | 16672    | 95.2        | <b>Mean</b> = 96.4   |
| MQC        | 3000          | 2821.20     | 16462    | 94.0        |                      |
| НQС        | 5000          | 5000        | 33062    | 100         |                      |
| НQС        | 5000          | 5191        | 34318    | 103.8       | <b>Mean</b> = 102.11 |
| НQС        | 5000          | 5127.4      | 33901    | 102.54      | 98.97%               |

| Table 6: | Ledi | pasvir | Accuracy  | results |
|----------|------|--------|-----------|---------|
| Lable 0  | Loui | pasvii | riccuracy | results |

| Concent       | ration (ng/mL)                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Statistical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Amount        | Amount                                                                                                                                                                         | Response                                                                                                                                                                                                                                                                                                                                                           | %Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| added (ng/ml) | found (ng/ml)                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | 98.2                                                                                                                                                                           | 3543                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1000          |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                    | 98.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1000          | 969.43                                                                                                                                                                         | 3473                                                                                                                                                                                                                                                                                                                                                               | 06.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Mean</b> = 97.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1000          |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                    | 90.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | 0.5.6.12                                                                                                                                                                       | 2.12.6                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1000          | 956.43                                                                                                                                                                         | 3426                                                                                                                                                                                                                                                                                                                                                               | 95.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | 2943.6                                                                                                                                                                         | 8984                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3000          |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                    | 98.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2000          | 2984.6                                                                                                                                                                         | 9114                                                                                                                                                                                                                                                                                                                                                               | 0.0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Mean</b> = 97.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3000          |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                    | 99.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3000          | 2872.4                                                                                                                                                                         | 8775                                                                                                                                                                                                                                                                                                                                                               | 95.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | 5000                                                                                                                                                                           | 17381                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5000          |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |                                                                                                                                                                                | 17015                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $M_{222} = 00.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5000          | 4897.78                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                    | 97.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | wean = 99.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |                                                                                                                                                                                | 17202                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | 4972 4                                                                                                                                                                         | 1/283                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5000          | +7/2.4                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                    | 99.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98.03%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.0370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | Concent         Amount         added (ng/ml)         1000         1000         1000         3000         3000         3000         3000         5000         5000         5000 | Concentration (ng/mL)           Amount<br>added (ng/ml)         Amount<br>found (ng/ml)           1000         98.2           1000         969.43           1000         956.43           1000         2943.6           3000         2984.6           3000         2872.4           3000         5000           5000         4897.78           5000         4972.4 | Concentration (ng/mL)         Amount         Amount         Response           added (ng/ml)         98.2         3543           1000         969.43         3473           1000         969.43         3473           1000         956.43         3426           1000         956.43         3426           1000         956.43         8984           3000         2943.6         8984           3000         2984.6         9114           3000         2872.4         8775           3000         2872.4         8775           5000         4897.78         17015           5000         4972.4         17283 | Concentration (ng/mL)         Response         %Recovery           Amount<br>added (ng/ml)         Amount<br>found (ng/ml)         Response         %Recovery           1000         98.2         3543         98.9           1000         969.43         3473         96.94           1000         956.43         3426         95.64           1000         956.43         3426         95.64           3000         2943.6         8984         98.08           3000         2984.6         9114         99.4           3000         2872.4         8775         95.73           5000         5000         17381         100           5000         4897.78         17015         97.9           5000         4972.4         17283         99.44 |

# Table 7: Accuracy data for Sofosbuvir at LLOQ level

|               |    | Concentra    | tion (ng/mL)  |          |           | Statistical         |
|---------------|----|--------------|---------------|----------|-----------|---------------------|
| Sample        | ID | Amount added | Amount found  | Response | %Recovery | Analysis            |
|               |    | (ng)         | ( <b>ng</b> ) |          |           |                     |
|               |    | 500          | 482.5         | 5058     |           |                     |
|               | 1  |              |               |          | 103       |                     |
|               |    |              | 512.5         | 4000     |           | -                   |
| <b>-</b> 0.0( | 2  | 500          | 515.5         | 4990     | 102.7     |                     |
| 50 %          | _  |              |               |          | 102.7     | <b>Mean</b> = 100   |
|               |    |              | 1765          | 4620     |           | -                   |
|               | 3  | 500          | 476.5         | 4628     | 94 5      |                     |
|               | 5  | 500          |               |          |           |                     |
|               |    | 1000         | 0.66.5        | 60255    |           |                     |
|               | 1  | 1000         | 966.5         | 68355    | 96.65     |                     |
|               |    |              |               |          |           |                     |
|               |    |              | 980.          | 6991     |           | <b>Mean</b> = 97.41 |
| 100 %         | 2  | 1000         |               |          | 98.096    |                     |
|               |    |              |               |          |           |                     |
|               | 3  | 1000         | 975.5         | 6904     | 97.5      |                     |
|               |    |              |               |          |           |                     |
|               |    | 1500         | 1460          | 9589     |           |                     |
|               | 1  |              |               |          | 97.3      |                     |
|               |    |              |               |          |           |                     |
| 150.0/        | 2  |              | 1480          | 9718     | 08.6      | <b>Mean =</b> 97.6  |
| 150 %         | 2  | 1500         |               |          | 90.0      |                     |
|               |    |              | 1456          | 9560     |           | -                   |
|               | 3  | 1500         | 1750          | 2200     | 97        |                     |
|               |    |              |               |          |           | Avg =98.33          |
| 1             |    |              |               | 1        | 1         | 1                   |

#### Table 8: Accuracy data for Ledipasvir at LLOQ level

| Somulo ID |   | Concentration (ng/mL) |               |          | 0/ Decovery | Statistical         |
|-----------|---|-----------------------|---------------|----------|-------------|---------------------|
| Sample    | ш | Amount added          | Amount found  | Response | %Recovery   | Analysis            |
|           |   | ( <b>ng</b> )         | ( <b>ng</b> ) |          |             |                     |
|           | 1 | 500                   | 487           | 1775     | 97.4        |                     |
| 50 %      | 2 | 500                   | 508           | 1841     | 101         | <b>Mean</b> = 98.83 |
|           | 3 | 500                   | 489           | 1768     | 97.8        |                     |
|           | 1 | 1000                  | 970.2         | 3486     | 97.02       |                     |
| 100 %     | 2 | 1000                  | 980.6         | 3532     | 98.6        | <b>Mean =</b> 97.87 |
|           | 3 | 1000                  | 980           | 3512     | 98          |                     |
|           | 1 | 1500                  | 1440          | 5250     | .96         |                     |
| 150 %     | 2 | 1500                  | 1480          | 5392     | 98.6        | <b>Mean</b> = 97.4  |
|           | 3 | 1500                  | 1464          | 5337     | 97.6        | 09.02.07            |
|           |   |                       |               |          |             | 98.03 %             |

| <b>Table 7.</b> Sulusburn recovery dat | Table 9: | Sofosbuvir | recoverv | data |
|----------------------------------------|----------|------------|----------|------|
|----------------------------------------|----------|------------|----------|------|

| Sample ID | Concentrat              | tion (ng/mL)            | Dosponso | %Recovery | Statistical          |
|-----------|-------------------------|-------------------------|----------|-----------|----------------------|
|           | Amount<br>added (ng/mL) | Amount<br>found (ng/mL) | Kesponse |           | Analysis             |
| LQC       | 1000                    | 897.43                  | 6451     | 89.74     |                      |
| MQC       | 3000                    | 2762.4                  | 16126    | 92.08     | <b>Mean</b> = 91.70% |
| НQС       | 5000                    | 4686.4                  | 308456   | 93.3      |                      |

### Table 10: Recovery data for Ledipasvir

| Sample ID | Concer               | ntration (ng/mL)  | Decremente | %Recovery | Statistical          |
|-----------|----------------------|-------------------|------------|-----------|----------------------|
|           | Amount<br>added (ng) | Amount found (ng) | Response   |           | Anaiysis             |
| LQC       | 1000                 | 864.18            | 3096       | 86.418    |                      |
| MQC       | 3000                 | 2820              | 8616       | 94        | <b>Mean</b> = 89.26% |
| HQC       | 5000                 | 4569              | 15192      | 87.41     |                      |

 Table 11: Intra-day Precision results for Sofosbuvir and Ledipasvir

| Injection          | Peak area  |            |  |
|--------------------|------------|------------|--|
| -                  | Sofosbuvir | Ledipasvir |  |
| Injection-1        | 18143      | 9199       |  |
| Injection-2        | 18165      | 9230       |  |
| Injection-3        | 18029      | 9329       |  |
| Injection-4        | 18012      | 9453       |  |
| Injection-5        | 18130      | 9332       |  |
| Injection-6        | 18167      | 9234       |  |
| Average            | 18107.66   | 9296.16    |  |
| Standard Deviation | 465.88     | 94.50      |  |
| %RSD               | 0.39       | 1.02       |  |

| Injection          | Peak area  |            |  |
|--------------------|------------|------------|--|
|                    | Sofosbuvir | Ledipasvir |  |
| Injection-1        | 17513      | 9167       |  |
| Injection-2        | 17431      | 9364       |  |
| Injection-3        | 17494      | 9342       |  |
| Injection-4        | 18231      | 9228       |  |
| Injection-5        | 17723      | 9018       |  |
| Injection-6        | 17612      | 9332       |  |
| Average            | 17667      | 9241.8     |  |
| Standard Deviation | 352        | 71.15      |  |
| %RSD               | 1.97       | 0.76       |  |

#### Table 12: Inter-day Precision results for Sofosbuvir and Ledipasvir

# Table 13: Precision data at LLOQ for Sofosbuvir and Ledipasvir

| Injection          | Peak area  |            |  |
|--------------------|------------|------------|--|
|                    | Sofosbuvir | Ledipasvir |  |
| Injection-1        | 7079       | 3584       |  |
| Injection-2        | 6922       | 3549       |  |
| Injection-3        | 7095       | 3674       |  |
| Injection-4        | 7057       | 3524       |  |
| Injection-5        | 6962       | 3583       |  |
| Injection-6        | 6957       | 3528       |  |
| Average            | 7013       | 3572.84    |  |
| Standard Deviation | 178.35     | 58.33      |  |
| %RSD               | 1.04       | 1.6        |  |

| Table 14: Freeze and | Thaw | Stability | data |
|----------------------|------|-----------|------|
|----------------------|------|-----------|------|

| Name of the drug | Amount added     | Amount found (ng) | Response | % change |
|------------------|------------------|-------------------|----------|----------|
|                  | LQC(1000 ng/ml)  | 986               | 6978     | 1.4      |
| Sofosbuvir       |                  | 974               | 6894     | 2.6      |
|                  |                  | 984               | 6964     | 1.6      |
|                  | MQC (3000 ng/ml) | 2895              | 16900    | 3.5      |
|                  |                  | 2942              | 17174    | 1.9      |
|                  |                  | 2924              | 17069    | 2.52     |
|                  | LQC (1000 ng/ml) | 972.5             | 3484     | 2.75     |
| Ledipasvir       |                  | 986.5             | 3534     | 1.35     |
|                  |                  | 973               | 3486     | 2.7      |
|                  | MQC (3000 ng)    | 2923              | 8931     | 2.56     |
|                  |                  | 2913              | 8901     | 2.9      |
|                  |                  | 2906              | 8879     | 3.13     |

| Name of the drug | Amount added  | Amount found | Response | % change |
|------------------|---------------|--------------|----------|----------|
|                  | LQC (1000ng)  | 966.6        | 6841     | 0.625    |
| Sofosbuvir       |               | 974.8        | 6899     | 2.52     |
|                  |               | 976.4        | 6910     | 2.36     |
|                  | MQC (3000 ng) | 2924         | 17069    | 1.52     |
|                  |               | 2899         | 16923    | 2.02     |
|                  |               | 2989         | 17448    | 0.22     |
|                  | LQC (1000ng)  | 989.9        | 3546     | 1.01     |
| Ledipasvir       |               | 976.4        | 3498     | 2.36     |
|                  |               | 986.4        | 3534     | 1.36     |
|                  | MQC (3000 ng) | 2912         | 8898     | 1.76     |
|                  |               | 2811.5       | 8591     | 3.78     |
|                  |               | 2809.4       | 8584     | 3.812    |

#### Table 15: Short-term temperature stability data

#### Table 16: Long-term temperature stability data

| Name of the drug | Amount added     | Amount found (ng) | Response | % change |
|------------------|------------------|-------------------|----------|----------|
|                  | LQC (1000 ng/ml) | 984.9             | 6971     | 1.51     |
|                  |                  | 965.4             | 6833     | 3.46     |
| Sofosbuvir       |                  | 985               | 6971     | 1.5      |
|                  | MQC (3000 ng/ml) | 2942              | 14232    | 2.5      |
|                  |                  | 2895              | 16900    | 3.5      |
|                  |                  | 2924              | 17069    | 1.52     |
|                  | LQC (1000 ng/ml) | 992               | 3554     | 0.8      |
|                  |                  | 978               | 3504     | 2.2      |
| Ledipasvir       |                  | 986               | 3532     | 1.4      |
|                  | MQC (3000 ng/ml) | 2911              | 8895     | 2.96     |
|                  |                  | 2963              | 9053     | 1.2      |
|                  |                  | 2972              | 9081     | 0.93     |

#### Table 17: Stock Solution Stability data

| Name of the drug | Amount added | Amount found | Response | % change |
|------------------|--------------|--------------|----------|----------|
|                  |              |              |          |          |
| Sofosbuvir       | 1000 µg      | 996 µg       | 71426    | 0.5 %    |
|                  |              |              |          |          |
| Ledipasvir       | 1000 µg      | 998 µg       | 35722    | 0.79 %   |
|                  |              |              |          |          |

# Acceptance criteria:

Nominal concentrations should be within 15% of stability sample findings.

#### Acceptance limit:

The average recovery should range from 98 to 102%.

#### Recovery:

To determine recovery, the drug concentrations in the aqueous solution and the spiking solution were compared. The levels of recovery were determined by comparing the analytical results from three different concentrations of extracted samples (LQC, MQC, and HQC) to those from corresponding standards that had not been extracted. The results are summarised in Tables 10 and 11.

#### Precision and Intermediate precision:

When the process is performed on several aliquots of a single homogeneous biological matrix volume, analytical precision is helpful for characterizing the closeness of individual analyte readings.. Tables 6 and 7 show the results in tabular form.

#### Stability Studies:

#### *i. Freeze and Thaw Stability:*

Three rounds of freezing and thawing verified the sample's stability. Three different samples of LQC and MQC were frozen for 24 hours before being allowed to defrost at room temperature. Once the samples were at room temperature again, they were frozen again for another 12-24 hours. The freeze-thaw cycle was carried out three times in total, the third being used for analysis.

#### ii. Short-Term Temperature Stability:

After allowing three aliquots of LQC and three aliquots of HQC to warm to room temperature for 22 hours, they were analyzed.

#### iii. Long-Term Stability:

Long-term stability assessments need a longer period of storage than is required to collect the first sample and complete the final analysis. Thus, in order to assess their long-term stability, three aliquots of LQC and HQC were kept in the same conditions as the research materials for a total of 22 days.

#### Stock Solution Stability:

It took six hours to assess the stability of medication stock solutions at room temperature. Results from a stability sample must fall within 15% of nominal concentrations.

#### DISCUSSION:

Sofosbuvir and Ledipasvir were quantified in human plasma using a straightforward bioanalytical approach. In order to create the bio analytical HPLC method, we employed a (ODS) C18 (4.6 x 250mm, 5um, Make: Hypersil) column with a runtime of 10 minutes. The protein precipitation method was employed to get samples ready for analysis. *Rasheed et al.*, 2023

The mobile phase used in this study was composed of acetonitrile, methanol, and water at a ratio of 60:20:20, and the flow rate was set at 1 mL/min. The procedure's mobile phase was simple and inexpensive to set up. The range of the percentage mean recovery was determined to be 89.7-93.3% for sofosbuvir and 86.80-92.5% for ledipasvir. For sofosbuvir and ledipasvir, the number of theoretical plates is more than 2000, and the tailing factor is less than 2.0. The accuracy of the system and procedure was evaluated, and it was found to be within acceptable ranges. Herein is laid down the precise methodology. Studies assessing the procedure's precision found a recovery value of 99.97% to 100.04% for pure medication and sample. The developed system met all of those criteria, plus it was fast, accurate, and easy to use. It was found that Ledipasvir and Sofosbuvir were stable under a range of stability settings. Comparing the recommended extraction process to previously published methods; it is noticeably more straightforward, quick, reliable, and sensitive. This approach is better suited to processing several samples quickly for pharmacokinetic research because to its straightforward sample preparation process and fast chromatographic duration. This technique satisfied the ICH-established requirements for validation. As a result, the devised approach may be used for human therapeutic medication monitoring and pharmacokinetic investigations.

#### 4. Conclusions

The empirical evidence suggests that Sofosbuvir and Ledipasvir can be identified simultaneously by RP-HPLC. The new method was found to be superior to the old ones in every respect. All of the APIs were determined to be relevant and resolute under conditions ideal for simultaneous evaluation in bulk form and permitted dosage form.

#### References

- [1] ICH Guideline on Validation of Analytical Procedures: Text and Methodology; Q2 (R1), 2005.
- [2] ICH Guideline on Impurities in New Drug Products; Q3B (R2), 2006.
- B.K. Sharma. "Instrumental Methods of Chemical Analysis, Introduction to Analytical Chemistry," 23rd ed. Goel Publishing House, Meerut, 2004, pp. 12-23.
- [4] P.D. Sethi. "HPLC: Quantitative Analysis of Pharmaceutical Formulations," CBS Publishers and Distributors, New Delhi (India), 2001; pp. 3-137.
- [5] [Wikipedia] Sofosbuvir. (URL: https://en.wikipedia.org/wiki/Sofosbuvir)
- [6] [Wikipedia] Hepatitis C. (URL: https://en.wikipedia.org/wiki/Hepatitis\_C)
- [7] [Wikipedia] Ledipasvir. (URL: https://en.wikipedia.org/wiki/Ledipasvir)
- [8] B. Zaman et al., "RP-HPLC Method for Simultaneous Determination of Sofosbuvir and Ledipasvir in Tablet Dosage Form: Its Applications to In vitro Dissolution Studies," Springer Link, Chromatographia, 2016; 79, 23-24.
- [9] Devilal et al., "New Method Development and Validation for the Determination of Ledipasvir in

Bulk Drug Form by Using RP-HPLC," World Journal of Pharmacy and Pharmaceutical Sciences, 2016; 5(8), 1312-1321.

- [10] K.K. Kranthi et al., "A New Analytical Method Development and Validation for the Simultaneous Estimation of Ledipasvir and Sofosbuvir Using RP-HPLC," ICJPIR, 2017; 4(1), 142-165.
- [11] Yogendrachari et al., "Analytical Method Development and Validation for Simultaneous
- [12] Determination of Ledipasvir and Sofosbuvir in Tablet Dosage Form by RP-HPLC," J Global Trends Pharm Sci, 2016; 7(3), 3386-3393.
- [13] B. Ramu, Kaushal K. Chandrul, P. Shanmuga Pandiyan. "Using 24 Factorial Designs Optimization of Repaglinide Gastroretentive Drug Delivery System," Research J. Pharm. and Tech., 2021; 14(2), 725-729.
- [14] B. Sreenivasa Rao et al., "Simultaneous Analysis of Ledipasvir and Sofosbuvir in Bulk and Tablet Dosage Form by Stability Indicating High-Performance Liquid Chromatographic Method," GJRA, 2017; 6(4), 505-509.
- [15] Ravi Kumar et al., "Estimation and Validation of Sofosbuvir in Bulk and Tablet Dosage Form by RP-HPLC," Int J Pharm., 2016; 6(2), 121-127.
- [16] Suryaprakash et al., "Development and Validation of RP-HPLC and UV Spectroscopy Methods for Simultaneous Estimation of Sofosbuvir and Ledipasvir in Their Combined Tablet Dosage Form," Pharma Science Monitor, 2017; 8(2), 369-388.
- [17] C. Pavani and V. Jayashree. "Development of a Novel Stability Quoting RP-Ultra Performance Liquid Chromatography Approach for Synchronous Assessment of Doravirine, Lamivudine, and Tenofovir Disoproxil Fumarate in Pure API Form and Tablet Dosage Based on ICH Guidelines," J. Drug Alcohol Res., 2021; 11, 1-7.