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Abstract 

  Machine learning forecasting has been widely used in order to increase WWTPs performance. Forecasting wastewater 

influent quality parameters is not only beneficial for operators and the plant itself, as it is also important environmentally, 

economically, and socially. In this paper, Zaio’s WWTP BOD5 variable will be used as a case example. The current paper applies 

two time series forecasting models that are, based on machine learning, Recurring Neural Networks (RNN) and Elman Neural 

Networks (ENN) in order to provide more or less accurate predictions that will provide support to WWTPs management. The models 

used are statistically correct. The models were compared with error measures terms like MAPE, RMSE and R-squared.  The ENN 

model has the highest error measures compared to the RNN trained models. Thus, the comparison concludes that the second RNN 

trained model is the one with the best fit, as it holds the least error terms. The second RNN model has low error terms and high 

coefficients of determination, with an MAPE of 0.19, RMSE of 66,55 and an R-squared of 0,68486. The objective of this paper is 

to find the best wastewater influent quality parameter forecasting model. 
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1. Introduction 
 This paper introduces two forecasting models that 

are based on machine learning. These models are Recurring 

Neural Networks (RNN) and Elman Neural Networks (ENN). 

Machine learning forecasting has been widely used in order 

to increase WWTPs performance. In the contribution of Al-

Asheh et al. [1], the authors applied different forecasting 

models that include Artificial Neural Networks (ANN), 

Adaptive Linear Neuron Networks (ADALINE), and Multi-

Layer Feed-forward neural networks (ML-FF) to forecast 

influent quality parameters (BOD, COD, and TSS). Empirical 

findings indicate that the ML-FF model resulted in lower 

error terms. But concerning the contribution of Kriger and 

Tzoneva [2], authors used the ML-FF and Elman Recurring 

neural networks in order to forecast wastewater treatment 

plant influent disturbances. The current contribution will add 

to the existing literature by applying the two neural networks 

cited above (RNN and ENN). For this, the following section 

will introduce the methods that will be used, followed by the 

results sections. Finally, this paper will conclude with a 

discussion as well as the limitations of this work. 

 

2. Materials and Methods  
 It is essential to note that in the case of this 

contribution, the only used forecasted models are time series. 

By definition, time series variables refer to variables that are 

measured over time over successive times with a unified 

frequency such as daily, monthly, quarterly, annually, and 

whatnot. Forecasting models, as summarized in this 

following [3]–[15] :  

• Extrapolative methods with simple moving average, 

exponential smoothing, such as the Holt-Winters 

method, and autoregressive moving average (ARMA) - 

aka Box-Jenkins. 

• Explanatory variable methods with regression analysis, 

predictive modelling, artificial neural networks and 

econometric modelling. 

• Simulation modeling methods with cell-based 

modelling, system dynamics simulation and multi-agent 

simulation. 

• Judgmental methods. 

• Composite methods with bayesian forecasting and others 
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like the combination of different forecasting methods 

and models is a type of composite methods. 

 Also, with regards to the contribution of Kim et al. 

[16], the artificial neural network (ANN) and the 𝐴𝑆𝑀3 +
𝐵𝑖𝑜 − 𝑃 models were used in order to forecast the influent 

and effluent in order to forecast the 𝑁𝐻4
+ − 𝑁. Furthermore, 

this contribution forecasted the control of the effluent water 

quality in the 𝐴2/𝑂 (Anaerobic/Anoxic/Oxic) process for 1 

day in advance. Empirical findings indicate that by applying 

this model, the 𝑁𝐻4
+ − 𝑁 concentration decreased by 68% by 

only increasing the air flow rate by 9%, as suggested by the 

model. For Nadiri, Shokri, Tsai, and Moghaddam [17], the 

application of forecasting models consisted of applying a 

proposed ensemble supervised committee fuzzy logic model 

to predict various wastewater influent parameters that are 

BOD, COD, and TSS. The used model is based on artificial 

neural networks and uses the MAPE as an error comparison 

tool. Results indicate that the proposed model performs better 

than individual fuzzy logic models. 

 With regards to the publication of Yu et al. [18], it 

has used a combined Kernel Principal Component Analysis 

(KPCA) and Extreme Machine Learning (EML) to forecast 

the inlet water quality of sewage treatment. This same 

contribution was compared to a back propagation neural 

network (BPNN) model and many other models. These 

models were compared based on the mean absolute error 

(MAE), the mean absolute percentage error (MAPE), and the 

root mean square error (RMSE). Findings indicate that 

forecasts resulted from the KPCA model were more accurate 

than any other model included in the study. Concerning the 

contribution of Lotfi et al. [19], many wastewater parameters 

were forecasted and include BOD, COD, TSS, and total 

dissolved solids (TDS). This contribution suggested a new 

methodology that consists of a combination of ARIMA, 

which is a stochastic model, and a nonlinear outlier robust 

extreme machine learning technique (ORELM). More than 

144 × 8 linear models were considered (using ARIMA) in 

addition to more than 48 nonlinear models (using ORELM) 

and 48 hybrid models (using ARIMA-ORELM). Results 

show that the different obtained correlations between the 

observed values and the predicted ones could reach a value of 

0.99. 

 For Abba, Nourani, and Elkiran [20], different 

variables such as PH and SS were forecasted using different 

models. These latter include general regression neural 

network (GRNN), Hammerstein-wiener (HW) and non-linear 

autoregressive with exogenous (NARX) neural network, and 

the least square support vector machine (LSSVM), besides 

many other nonlinear ensemble techniques. Findings indicate 

that each model was suitable for a specific variable. For 

instance, HW model showed better accuracy in forecasting 

SS while GRNN-E model was better in predicting pH and SS. 

Neural networks are modern computational systems (either 

software or hardware) that simulate biological systems via 

using a large number of interconnected artificial neurons. A 

neural net consists of neurons that enable establishing a 

connection between them while maintaining a direct 

communication link between each of them. In addition to that, 

this established communication links have different weights 

and represent information using in the neural net in order to 

solve a given problem. This is given by the following formula 

[21]: 

𝑂𝑗 = 𝑓 (∑ 𝑤𝑖𝑗𝐼𝑖

𝑛

𝑖=1

+ 𝑏𝑗) (1) 

Where: 

• 𝑂𝑗: The output of the jth neuron. 

• 𝑓: represents the transfer function used or the activation 

of the neuron. 

• 𝑏𝑗: represents the bias of the jth neuron. 

• 𝑤𝑖𝑗: represents the synaptic weight of the ith synapse of 

the jth neuron. 

• 𝐼𝑖: represents the input signal of the jth neuron. 

• 𝑛: represents the total number of the input signals to the 

jth neuron. 

 The equation is represented in figure 1 [21]. The 

logarithmic sigmoid, hyperbolic tangent sigmoid, and linear 

functions are the most common used activation or transfer 

functions used in neural networks. 

 

Figure 1 : Schematic diagram of neuron j and its link 

2.1. Zaio WWTP description 

 The Zaio WWTP (Figure 2) is designed for a 

capacity of 2,454.00 m3 per day and allows the treatment of 

suspended solids, chemical oxygen demand, biological 

oxygen demand. This is throughout a pre-treatment stage and 

a biological treatment of the trickling filter type. 

 
 

Figure 2: Zaio WWTP 

 The raw wastewater flow rates used are as follows 

(Table 1): 
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Table 1 : Raw wastewater flow rates 

Parameters Units Values 

Nature of raw water Domestic 

Average daily flow m3/j 2.454 

Daily BOD5 Kg/j 1.364 

Suspended Solids Kg/j 955 

Daily COD Kg/j 2.455 

 The average daily concentrations of raw wastewater 

are as follows (Table 2): 

Table 2: Average daily concentrations of raw wastewater 

Parameter Unit Value 

BOD5 mg/l 556 

COD mg/l 1001 

TSS mg/l 389 

 The following section will introduce all the 

treatment process included in this wastewater treatment plan. 

This is divided into water and sludge sectors. The water queue 

is made up of two treatment queues, one of which is backup 

(in the case of pre-treatment), to give the station flexibility 

and security in maintenance operations. It consists of the 

following stages: 

• Pre-treatment: The pre-treatment structures are designed 

for the reception of peak flow in rainy weather 355,5 m3 

/ h; 

o Screening: this stage is made up of two channels, 

one of which is emergency with 10 mm air gap 

(mechanic) and the other channel is provided 

with an inclined screen with automatic cleaning 

of 06 mm air gap. 

o Flow measurement: The flow measurement of the 

wastewater is done using an Parshall canal flow 

meter. 

• Biological treatment: Biological treatment is provided by 

two anaerobic ponds and two trickling filters. 

o Anaerobic ponds: These ponds are of rectangular 

type with a unit volume of 4.366 m3 /u and 3,75 

m of depth. 

o Trickling filters: These filters are of circular type 

with a unit volume of 891,7m3/u and 14,50 m of 

of diameter and 5,40 m of height with natural 

aeration 31 windows de 1 m2 (1m*1m) and a 

sprinkler with 0.03 rpm of velocity. 

o Secondary settling tank: secondary decantation is 

ensured by one secondary clarifiers. This clarifier 

is lamellar type with a unit volume of 400 m3. 

o Flow measurement: The flow measurement of 

treated water is done using an Parshall canal flow 

meter. 

 The sludges queue is made up of two treatments: 

• Extraction secondary sludge: The sludge is pumped by 

two pumps, one of which is an emergency backup 

installed of 17,20 m3/h per line, towards the anaerobic 

ponds. 

• Extraction primary sludge: The sludge is pumped by one 

pump installed of 27 m3/h, towards the anaerobic ponds. 

• Drying beds: Sludge drying is done using sixteen (16) 

drying beds, each one is of rectangular type with a unit 

surface of 250 m²/u. 

2.2. Data 

 The data used in this contribution was measured in 

the Zaio WWTP between 02/10/2017 and 01/10/2018. The 

data set accounts for the wastewater influent and effluent 

parameters that is BOD5 influent and effluent quality 

variable. The values of this variable are stated in mg/L and 

will enable calculating the daily treated BOD5 variable. 

2.3. Elman Neural Network Model 

 The current section introduces the Elman Neural 

Network model that was first proposed by Elman in 1990, 

which is considered as a typical dynamic neural network [22]. 

The standard model accounts for an input layer, a hidden 

layer, an output layer, and a context layer such as shown in 

figure 3 [22]. 

 

Figure 3: Structure of the Elman Neural Network 

 Concerning the role of the context layer, it serves as 

the information record that enables transferring information 

from the last network iteration to the newest one. According 

to Chiang et al. [23], this feature makes the model more 

suitable in forecasting time series variables compared to other 

time series models. In the contribution of Li et al. [22], the 

model’s computational process can be expressed by the 

following formulas: 
• The output of the output layer at period t: 

𝑂𝑞
(𝑡) = 𝑓 (∑ ℎ𝑗

(𝑡)

𝐿

𝑗=1

𝜔𝑗,𝑞) (2) 

• The output of the hidden layer at period t: 

ℎ𝑗
(𝑡)

= 𝑓 (∑ 𝑢𝑖
(𝑡)

𝐿

𝑖=1

𝜔𝑖,𝑗 + ∑ 𝑐𝑘
(𝑡−1)𝜔𝑗,𝑘

𝐿

𝑘=1

) (3) 

• The output of the context layer at period t-1: 

𝑐𝑘
(𝑡−1) = ℎ𝑗

(𝑡)
 (4) 

 Where f represents the activation function. In the 

Scase of this contribution, the activation function of the 

hidden layer is the sigmoid function and is given such as: 
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(𝑥) = 1/(1 + 𝑒−𝑥) , and the activation function of the output 

layer is linear and is given such as: 𝑓(𝑥) = 𝑥. Concerning 

𝜔𝑗,𝑞, 𝜔𝑖,𝑗, and 𝜔𝑗,𝑘, they represent the connection weights 

between the layers, respectively. 

 The following model consists of a learning model 

that accounts for different steps in its process. With regards 

to the first step, it consists of a random function that has as a 

purpose initiating the connection weights between the 

network’s layers in order to determine the allowable error. In 

the case of this contribution, the error term is represented by 

the mean square error (MSE) that is given such as [22]: 

𝐸 =
1

𝑁
∑(𝑂𝑒𝑞

(𝑡)
− 𝑂𝑞

(𝑡)
)

2
𝑁

𝑞=1

 (5) 

 Where 𝑂𝑒𝑞
(𝑡)

 represents the expected output at period 

t of the network, and 𝑂𝑞
(𝑡)

 represents the actual output of the 

network at the same period. Concerning the second step, it 

consists of normalizing the input data and calculating the 

value of the error. 

 This is followed by updating the connection weights 

between layers according to the calculated error, and using 

the momentum gradient descent algorithm. Concerning the 

normalization of input data and the weight change, they are 

given such as [22]: 

𝑧 = (𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛)
𝑞 − 𝑞𝑚𝑖𝑛

𝑞𝑚𝑎𝑥 − 𝑞𝑚𝑖𝑛

+ 𝑞𝑚𝑖𝑛 (6) 

∆𝜔(𝑘) = −ɳ
𝜕𝐸

𝜕𝜔(𝑘)
+ 𝛼∆𝜔(𝑘−1) (7) 

 Where q is the principal component sequence, and 

the minimum value of the sequence and the maximum value 

of the sequence are  𝑞𝑚𝑖𝑛 and 𝑞𝑚𝑎𝑥  , respectively. For the 

normalized data z, it is between 1 and 0 that corresponds to 

𝑧𝑚𝑎𝑥   and 𝑧𝑚𝑖𝑛 , respectively. ∆𝜔(𝑘) represents the change in 

the network weights in the kth update, and ∆𝜔(𝑘−1) represents 

the change in the network weights in the k – 1th update. In 

the case of this contribution, α, which is the momentum 

constant is given such as α=0.9, and ɳ, which is the learning 

rate, is given such as ɳ = 0.05. The maximum number of 

iterative trainings is set in order to stop the Elman Neural 

Network training process. 

2.4. Recurring Neural Networks 

 This section introduces the RNN model that is used 

for sequential data. The contribution of Hochreiter and 

Schmidhuber [24] indicate that this type of models uses a 

long short-term memory that is considered to be a gated unit 

for neural networks. RNN model has 3 gates that manage the 

memory’s content. These gates are given by simple logistics 

functions of weighted sums that are learnt by back 

propagation [25]. This is illustrated in figure 4 [26]. 

 

Figure 4: Two simple recurrent network structures 

 In this process, the cell state is managed by the input 

gate and the forget gate (or the long-term memory). In 

addition to that, the input state results in a hidden state. This 

can be mathematically expressed such as [25]: 
• Input gate: 

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (8) 

• Forget gate: 

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (9) 

• Cell state: 

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (10) 

• Output gate: 

𝑐𝑡 = 𝑓𝑡ʘ𝑐𝑡−1 + 𝑖𝑡ʘ𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) (11) 

• Hidden state: 

ℎ𝑡 = 𝑜𝑡ʘ tanh(𝑐𝑡) (12) 

 RNN models can learn as well as memorize the time 

series characteristics. However, it is important to encode 

many features such as trend and seasonality. For this, it is 

necessary to normalize the values of the dataset such as [25]:  

𝑥̃ =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
 (13) 

Or 

𝑥̃ =
𝑥 − mean(𝑥)

𝑠𝑑(𝑥)
 (14) 

 The main features of RNN models are lags, trend, 

seasonality, and dummy indicators. Concerning the lag 

attribute, they are used as the main input for forecasting. Yet, 

the only drawback in using this feature is losing the first 

observation. Still, the higher is the number of the 

observations, the lower the impact of this feature is. But with 

regards to the trend attribute, it refers to the ability of the 

model to learn the trend of the time series over time and 

duplicate it. This is also the case of the seasonal attribute. But 

for the dummy variable feature, it refers to indexing special 

or unusual events such as holidays [25]. 

 Finally, it is important to note that forecasting using 



IJCBS, 24(6) (2023): 55-64 
 

A. CHAOUI et al., 2023     59 
 

RNN models is suitable for only one-step ahead. In order to 

use a multi-step-ahead forecasting, it is important to use an 

iterative or recursive manner. This latter step can be 

explained by looping over the RNN model for each new point 

forecast, and including each new prediction at the beginning 

of each new loop iteration [25]. 

2.5. Forecast performance measures 

 Error measures comparison help to compare 

different forecasting models in order to know their 

performances and apply the most suitable model. There are 

many error measures, some of them are [27]–[31]: 

• The mean forecast error (MFE) referred to as the forecast 

bias and which measures the average deviation between 

actual and predicted values. However, since errors can be 

positive or negative, this error measure cancels out, and 

does not provide the real error value. 

• The mean absolute error (MAE), which measure solves 

the issues of positive and negative errors that cancel out, 

and shows the magnitude of the overall error. The lower 

is this value, the better is the forecast model. 

• The mean percentage error (MPE), which measures the 

average error stated in terms of percentage 

• The mean squared error (MSE), which measures the 

squared deviation of predicted values  

• The sum of squared error (SSE), which measures the 

total squared deviation instead of the average 
 In this paper and in order to compare between the 

accuracy of the predictions of the ENN and RNN models, 

three error measures will be used that are the root mean 

square error (RMSE), the mean absolute percentage error 

(MAPE), and the coefficient of determination (R-squared). 

For RMSE and MAPE, lower values indicate a better 

prediction, but for the R-squares, the higher the percentage, 

the better the predictions. These error measures are given 

such as [32]: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦̂𝑡 − 𝑦𝑡)2𝑛

𝑡=1

𝑛
 (15) 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦𝑡 − 𝑦̂𝑡

𝑦𝑡

| 
𝑛

𝑡=1
 (16) 

Where: 

• 𝑦̂𝑡: predicted values; 

• 𝑦𝑡: regression’s dependent variables; 

• n: all periods. 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
= 1 −

𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
      (17)  

 

 

3. Results and Discussion 
3.1. Elman Neural Network model results 

 The following section will present the steps as well 

as the results of the BOD5 forecasting using ENN model. 

3.1.1. Exploring and preparing the data 

 The first step under this section is checking the 

decomposition of our time series variable using a 

multiplicative model given such as: 

𝐵𝑂𝐷5𝑡 = 𝑡𝑟𝑒𝑛𝑑𝑡 × 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑡 × 𝑟𝑎𝑛𝑑𝑜𝑚𝑡  (18) 

Where random refers to the error component. 

 This done throughout the “decomp” function in R. 

The decomposition of the BOD5 variable (Figure 5) shows 

that the trend component is nonlinear, as it contains periods 

of increase and period of decrease. In addition to that, the 

seasonal component is not clear. 

 

Figure 5: Decomposition of BOD5 variable 

 The next step relates to checking the distribution of 

the error component. In the case of this research, figure 6 

indicates that the error density has a normal distribution 

shape, which is further confirmed by the linear line shown in 

the Q-Q plot in figure 7. 

 

Figure 6: Density plot of the random component of the 
BOD5 variable 

 

Figure 7: Q-Q plot of the random component of the BOD5 
variable 

 In order to check the stationarity of the data, the next 

step is to plot the ACF plot of the BOD5 variable. It is clearly 
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shown in figure 8 that there are numerous spikes outside of 

the confidence interval, which indicates that there is an 

obvious autocorrelation between lagged BOD5 values and 

current ones. 

 

Figure 8: Auto correlations of the BOD5 variables 

 Concerning the last part of the data exploration and 

preparation, the data will be normalized, and the lag attributes 

will be created. Since this contribution uses daily data, 7 

lagged attributes will be added in order for the R program to 

understand this frequency.  

3.1.2. Training the model on the data 

 The following section will train the ENN model 

using two third of the data sample, while only one third of the 

data sample will be used in order to test the model. The 

following part requires the “RSNNS” package in R. The 

trained ENN model accounts for 2 hidden layers where each 

one has 2 nodes. This model runs for 100 000 iterations. After 

training this model, figure 9 shows the error in each iteration. 

It is clearly seen that that model is able to learn from the 

historical data. In addition to that, figure 10 represents the 

fitted versus actual BOD5 values regression curves. The 

black line shows the linear regression curve of actual values 

while the red line shows the linear regression curve of fitted 

values. As both these two lines fit the data, it further confirms 

that the ENN model was able to train by learning from 

historical values. Finally, the trained model has resulted in an 

R-squared of 0.6679. 

 

Figure 9: Error by iteration for ENN model 

 

Figure 10: Fitted and actual values regression curve 

 Figure 11 represents a graphical illustration that 

represents the actual BOD5 values versus the trained ENN 

model values. It is noticeable that the trained values follow 

the same pattern as the actual BOD5 values. In addition to 

that, the variance or standards deviation are minimal. 

 

Figure 11: Trained versus actual BOD5 values 

3.1.3. Assessing test performance 

 The final step of this model is to assess the test 

performance. This step requires predicting BOD5 values in 

the test sample in order to check its performance. In order to 

make the data usable, it is necessary to unscale the date in 

order to get them back to their original form. The following 

graph (Figure 12) shows the resulted BOD5 values from the 

ENN test sample. This graph does not clearly indicate 

whether if the model was able to accurately predict the BOD5 

values or not. For this, the error measure tools will be used in 

a later section to assess the ENN model and compare it with 

the RNN model. 

 

Figure 12: Actual versus tested ENN model BOD5 values 
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3.2. Recurring Neural Network model results 

 The following section will present the steps as well 

as the results of the BOD5 variable predictions using the 

recurring neural network model. Figure 13 shows the BOD5 

time series variable for a period of 90 days. This figure 

indicates that the time series variable has a lot of fluctuations, 

which refers to a high variation or a high standard deviation. 

For this, the next step consists of exploring as well as 

preparing the data to fit within a recurring neural network. 

 

Figure 13: BOD5 in mg/l for 90 consecutive days 

3.2.1. Exploring and preparing the data 

 In building a recurrent neural network, it is of prime 

important to explore and prepare the data. This model is 

univariate and consists of the creation of time lag attributes. 

For this, 4 time lagged attributes will be created such as to 

have 4 variables in addition to the initial BOD5 variables. 

Each of the created variables will account for a lag of 1, 2, 3, 

and 4, respectively. In addition to this step, the BOD5 

variable is transformed using the log function. The steps 

discussed above will result in a matrix that has missing 

values. For this, it is necessary to remove the first 4 lines of 

this matrix to remove these missing values. The second part 

of the data preparation step relates to the normalization of the 

values as described in the methods section, to become within 

the range (0,1). Concerning the last step of the data 

preparation, it relates to the creation of the train and test 

samples. Since our dataset accounts for 90 daily variables, 

two third of the BOD5 values will be used to train the model, 

and one third of the BOD5 values will be used to test the 

model. 

3.2.2. Training the model on the data 

 The current section will train the RNN model. This 

part requires the “rnn” package, and uses the “trainr” function 

to train the model. This latter function requires a 3 

dimensional array to pass the attribute data that are mainly the 

number of samples, time, and number of variables. This 

corresponds to the numbers 1, 60, and 4, respectively. In the 

case of this contribution, the first model that will be trained 

has 3 nodes in the hidden layer. In addition to that, the 

model’s learning rate is 0.05, the number of numepochs is 

10 000, and the transfer or activation function is sigmoid as 

described in the results section. After training the model, the 

error curve decreases rapidly after the first 1000 epochs. This 

indicates that the model is learning rapidly from the data 

(Figure 14). The trained model accounts for an error margin 

of less than 6.6, and this value can be further decreased by 

increasing the numbers of epochs. 

 

Figure 14: Error curve by epoch for model1 

 This model has resulted in an R-squared value of 

0.6796. In order to improve this model, the same model will 

be trained. Yet, and similar to model 1, this model will 

account for 3 nodes exists while 2 hidden layers will be 

added. Figure 15 shows the error curve by epoch. This model 

has resulted in an R-squared of 0.68486, which is higher than 

the previous model. 

 

Figure 15: Error curve by epoch for model2 

 The following two graphs (Figures 16 and 17) 

represent the actual BOD5 variables and the trained model. 

Both models indicate that the trained values fit the actual 

values, as they have the same trends. 

 

Figure 16: Actual versus trained variables of BOD5 
variable – model 1 
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Figure 17: Actual versus trained variables of BOD5 
variable – model 2 

3.2.3. Preparing the test set data and forecasting using 

the model 

 After improving the model, the test sample will be 

created in order to forecast the BOD5 variable using the RNN 

model. This step enabled forecasting the BOD5 variable 

using the trained models. Yet, and in order to make this data 

ready to use, it is necessary to unscale the data and use the 

exponential function to make it in its original form. After 

unscaling the data, and transforming it to its natural state 

using the exponential function. The model has learned from 

the historical data and provided good forecasts. Yet, in a later 

section, the error measures will be calculated in order to 

compare between the RNN model and the ENN model. The 

last step of this section consists of making the forecast of 6 

periods after the end of the study period. It is necessary to 

improve the model by re-optimizing the weights as new 

observations become available. For this, the following part 

will use a loop that includes all the steps used above. This 

accounts for opening the loop, preparing the training data, 

specifying the model, testing the data, and making the 

prediction. Each iteration of this loop makes a new point 

forecast. The following line graph (Figure 18) represents the 

forecasted values of the BOD5 variable for the next 6 days 

after the study period. 

 

Figure 18: Forecasts of BOD5 variable for 6 days using RNN model 

3.3. Models comparison tools 

 The following section represents the error measures 

for each model. With regards to the ENN model, it has 

resulted in a MAPE with a value of 0.33 and an RMSE with 

a value of 105.64. In addition to that, this latter model resulted 

in an R-squared of 0.6679 (Table 3). Comparing to other 

models, the ENN model has the highest error measures 

compared to the RNN trained models (both model 1 and 

model 2). This is because the RNN model has resulted in the 

values of 0.21 and 0.19 for the MAPE, values of 67.09 and 

66.55 for the RMSE, and an R-quared with the values of 

0.6796 and 0.68486, for model 1 and model 2, respectively 

(Table 3). This comparison concludes that the second RNN 

trained model is the one with the best fit, as it holds the least 

error terms. 

Table 3: Models’ error measures 
 

MAPE RMSE R-squared 

ENN 0.33 105.64 0.66790 

RNN model 1 0.21 67.09 0.67960 

RNN model 2 0.19 66.55 0.68486 

 

4. Conclusions 

 This paper applied two time series forecasting 

models that are based on machine learning. These models are 

Elman Neural Network, and Recurring Neural Network. 

Analyses indicate that the models used are statistically 

correct. In addition to that, both models resulted in a 

significantly low error terms and high coefficients of 

determination. Furthermore, empirical findings indicate that 

the Recurrent Neural Network is the model that holds the 

lowest error terms, which makes it the most suitable. 

It is important to note that among the main limitations of this 

study can be summarized such as: 

• The RNN model is most suitable for predicting only one-

step forward. For this, it is important to use an iterative 

process that includes new predictions for multi-step 

forward forecasting. 

• These models require lots of statistical as well as 

programming skills that might be hard to apply among 

WWTPs professionals. Yet, they can be automated. 

• The programs used might take time to run. 
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