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Abstract 

This article emphasized sustainable methods using natural resources in producing SnO2 NPs and how it is employed as an 

inexpensive and reasonable photocatalyst to degrade dyes pollutant. Green synthesis of SnO2 NPs using plant extracts is known to 

lower the consumption of hazardous chemicals or energy. Phytochemicals from plants serve as the capping and reducing agents 

during the synthesis process, and subsequent heating treatment continued the procedure to furnish SnO2 NPs. It was discovered that 

pure SnO2 NPs synthesized from different plants possess a distinctive band gap value, that react differently for the kinetic reaction. 

However, all of the photocatalyst are successfully involved in the irradiation of light to this semiconductor, which leads to photo-

oxidation activity generating electrons and holes. This resulted in the redox reaction which serves for the degradation of dye 

molecules, whereby all of them gave different degradation percentages in agreeable values. 
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1. Introduction 

The superiority of nanotechnology applications is 

acknowledged by humans owing to nanomaterials' excellent 

physicochemical properties. They are known to have 

excellent stability and porosity, which is proven to exceed 

their traditional material [1].  According to Singh et. al 

(2019), nanomaterials are broadly developed for many 

valuable technologies, for instance, electronics, optics, 

catalysis, space, energy, and biomedical science [2]. At this 

juncture, a kind of nanomaterial identified as nano metal 

oxides was found to have significant potential applications, 

because of its high specific surface area to volume ratio and 

its distinctive structural characteristics. Among these 

nanomaterials, tin oxide nanoparticles (SnO2 NPs) has gained 

a lot of attention due to their unique electrical and optical 

feature [3]. This n-type semiconductor (SnO2 NPs) serves a 

wide band gap of 3.6 eV, besides having good chemical 

stability, hydrogen production, low resistivity, and high 

transparency [4].   

 

To date, the advancement of SnO2 NPs has been 

embedded in the application of solar cells, gas sensors, 

lithium-ion batteries, electrodes, catalysts, medical, energy 

storage and coatings [5-12]. Sagadaven (2021), Satinder 

(2015), and Rana et. al (2020) described that the plant extracts 

had been utilized for the synthesis of SnO2 NPs under green 

synthesis protocol, either from leaves, fruits, flowers, seeds, 

or barks section. Notably, three criteria play a critical role in 

the green synthesis approach: a non-toxic solvent, an 

excellent reducing agent, and a non-hazardous material for 

stabilization. The interesting part of this method is that it 

offers wide availability of raw materials, is safer, 

biocompatible, sustainable, requires less energy, is rapid, 

easy to handle, and affordable. Moreover, raw material 

contains various phytochemicals employable as reducing and 

capping agents. The phytochemicals such as flavonoids, 

polyphenols, alkaloids, glucose, terpenoids, and tannins are 

reported to be responsible for reducing Sn4+ or Sn2+ from 

precursor salt to Sn0. 
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They act as the stabilizing agent in retaining the 

reactivity of the SnO2 NPs. Several studies have been 

performed using a range of plant extracts for example Vitex 

altissima (L.), Aspalathus linearis, Ziziphus jujube, Daphne 

mucronate, Aquilaria malaccensis, Citrus aurantifolia, 

Annona squamosa, Pandanus amaryllifolius, Tradescantia 

spathacea, Carica papaya, Cyphomandra betacea, Litsea 

cubeba, Chromalaena odorata, Pruni spinosae, Psidium 

guajava, Stevia rebaidiana and many more [13-29]. 

Previously, the implementation of conventional methods to 

synthesize SnO2 NPs were reported to lead to several 

shortcomings.  This can be seen in the use of toxic chemicals 

and solvents, the requirement of expensive instruments, and 

high energy, as well as generating ecological contamination. 

These unfavorable methods are known as sputtering, 

chemical vaporization, ultrasonication, thermal 

decomposition, spray pyrolysis, laser irradiation, and 

electrolysis [30-32]. Thus, by having green synthesis as an 

alternative method, the production of SnO2 NPs is in line with 

the implementation of the Sustainable Development Goal 

agenda. The unique properties own by SnO2 NPs make it as 

the favorable photocatalyst for the green and eco-friendly 

treatment of dye-polluted water under photocatalytic activity 

[33]. The photocatalytic process is proven to be efficient and 

practical under mild conditions, and more significantly, it 

serves a lot of catalytically active sites [34].  

 

Regarding the issue of dye-polluted water, the aquatic 

system currently contains many disposal products containing 

dyes, paper, plastics, food and drinks, textiles, and such. 

These materials later cause the accidental release of dye 

molecules after exposure to the water system. Since dyes may 

accumulate in specific tissues and organs and lead to various 

illnesses even at low concentrations, dye-polluted water is 

recognized as a significant concern worldwide since it also 

disrupts aquatic ecosystems [35]. For instance, dye molecules 

will block sunlight and then reduce the rate of the 

photosynthetic process in aquatic plants. The expected 

growth of aquatic animals will face irregularity by the 

decreasing oxygen capacity of water. Some disorders such as 

gastrointestinal, anemia, and skin and bladder irritation are 

common diseases caused by the uptake of dye-polluted water 

[15]. This scenario involves the presence of highly stable and 

soluble dye molecules in water, making them one of the non-

biodegradable moieties, making it difficult to remove or 

degrade [36]. Besides, the complex structure of dye 

molecules consisting of aromatic rings is another reason for 

the difficulty  [37]. Treatments such as ultrafiltration, reverse 

osmosis filtration, Fenton oxidation and ozonation did not 

work out very well despite the use of many chemicals, plus 

generating an unwanted secondary pollutant.  During the 

photocatalysis process, in general, the catalytic mechanism is 

based on the creation of electron-hole pairs through band gap 

energy. Light will be absorbed by photocatalysts referring to 

SnO2 NPs and transformed it to higher energy, followed by 

the subsequent transfer to the pollutant molecule [38]. In this 

article, we tried to describe the recent advances of green 

synthesized SnO2 NPs by reviewing the utilization of several 

plant extracts to mediate the formation of SnO2 NPs as the 

photocatalyst. The mechanism that pertinent to kinetics order, 

and the respective catalytic performance based on of green-

synthesized SnO2 NPs  from different plants in degrading the 

organic dyes were also be discussed. This article could be the 

supporting document to prove that the green-synthesized 

SnO2 NPs possess high potential to be used as the 

photocatalyst based on the energy potential represented by 

the energy band gap, as well as its degradation capability 

from the experimental quantification.  

 

2. Results and Discussions 

 

2.1. Green Synthesis of SNO2 NPs using plant extracts 

Plants are the unique creation in earth, whereby they can 

easily convert light energy into chemical energy, consumed, 

accumulated, employed and recycled various minerals by 

their own capability as explained by Oza et. al (2020) [39]. 

Apart from this, plants are brilliant resources of renewable 

and sustainable materials for the green synthesis of 

nanoparticles. The plant extract's phytochemicals are highly 

associated with the donation of electron-proton species to 

mediate green synthesis. The nucleophilicity effect carried by 

phenolic rings facilitates them in metal-chelation activity, 

resulting in efficient action in reducing, capping, and 

stabilizing actions. Phytochemicals were also discovered to 

be responsible for controlling the nanoparticles' size and 

morphology [40-41]. Having this advantages attribute,  they 

are strongly recommended as the green tool. Besides using 

plants extract as the green synthesis tool, other examples are 

by biological means such as bacteria, fungi and algae but they 

seem to be less favorable since the process will involve 

tedious handling and storage in contrast when using plants 

extracts. The stages involved in the green synthesis of SnO2 

NPs are relatively straightforward. The first step is the 

addition of the prepared plant extract into precursor salt 

solution, which is tin chloride, followed by stirring. In 

general, all these plant samples are fresh before subjected to 

drying process and showed particular color change before 

collection. During the extraction process, most of the solution 

turned to be in green or brownish solution before being added 

to precursor salt solution.  After stirring, the formation of the 

precipitate or gel will occur, and it will be collected before 

thermal treatment. The illustration of the process is shown in 

Figure 1.  

 

2.2. Probable mechanism of green synthesis of SnO2 NPs 

During the formation of SnO2 NPs using plant extract, 

three crucial phases are involved in the mechanism: 

activation, growth, and termination. The illustration is 

displayed in Figure 2 [42]. The activation phase relates to 

reducing the cation from the metal precursor resulting in 

nucleation afterwards. The second phase, which is growing, 

is an occurrence of the tiny nanoparticles merging voluntarily 

into bigger particles, which heightened the thermodynamic 

stability of nanoparticles. This phenomenon is known as 

Ostwald ripening. The final phase, the termination, involved 

the finalized tuning of the size and shape, whereby the help 

of the stabilizing effect from the phytochemicals (Flavonoids, 

alkaloids, glucose, terpenoids, and tannins etc.) furnished the 

most energetically preferable orientation and conformation of 

nanoparticles. 

 

2.3. Mechanism of photocatalytic activity by SnO2 NPs 

The lower energy band, which refers to the conduction 

band (CB), is filled with electrons for semiconductors 

material. While the upper band, which is the valence band 

(VB), is electrons-free.  
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The electronic characteristic and performance of the 

particular material originally come from this energy 

difference between these two bands, known as the energy 

band gap (Ebg). In addition,  the band gap value will define 

the material's applicability as a semiconductor. SnO2 is 

considered an ideal material for photocatalysis since it has a 

large band gap energy of 3.6eV, which relates to 

photoactivation within the UV range of the electromagnetic 

spectrum [43]. The employment of metal-semiconductors in 

photocatalysis signifies the ecologically friendly method, in 

which the activity is fastened after being introduced to light. 

Regarding this, metal oxides would generate an electron-hole 

pair and break down the dye molecules into degraded 

products under a redox reaction [44]. Throughout the 

photocatalysis process, the dye degradation rate is associated 

with the production of the light-dependent free radical on the 

surface of the photocatalyst. When the SnO2 NPs surface is 

irradiated with appropriate light energy or higher than its 

band gap energy, migration of electrons occurs, generating 

holes (h+) in the valence band and an electron (e-) in the 

conduction band (Equation 1). The redox reaction is 

performed by the action of the holes (h+) as an oxidizing agent 

and oxidize the dye directly or react with H2O giving 

hydroxyl radicals (OH-) (Equation 2). Likewise, the reducing 

agent represents by the electrons (e-) in the conduction band 

to reduce the O2 adsorbed on the SnO2 surface to give 

superoxide radical (O2
-) (Equation 3). The key parameter 

during this light-dependent excitation of SnO2 NPs is the 

generation of two species; superoxide (O2
.-) ions and 

hydroxyl (OH-) radicals, whereby they initiate the photo-

oxidation by reacting with the dye molecules as illustrated in 

Figure 3 (Equation 4) [45-46].  

 

SnO2 + hν → SnO2 (e-) + SnO2 (h+) ……. (1) 

h+
VB + H2O → OH.- …….  (2) 

e-
CB + O2 → O2

-  ……. (3) 

O2
- or OH- + Dye molecules → degraded product … (4) 

 

2.4. Degradation of dyes by SnO2 NPs photocatalyst 

Several reports described the degradation efficiency 

using green synthesized SnO2 NPs. Here, SnO2 NPs 

synthesized using various plant sources have proven to be an 

efficient photocatalyst for degrading dye pollutants under 

irradiation of sunlight or UV. A study by Bhosale et al. 

utilized an aqueous leaves extract of Calotropis gigantean 

mixed with SnCl2 to give a precipitate that was further 

annealed at 300°C. A rutile structure of irregular shape of 

SnO2 NPs with a crystallite size of 35nm was obtained. The 

energy band gap signified as 3.1eV in degrading 80% of 

Methyl Orange [47]. Camellia sinensis leaves extract and 

SnCl2.2H2O was used by Luque et al. which experienced a 

thermal bath at 60oC within 12 hours. The calcination for the 

obtained pellet was carried out at 400oc for 1 hour, giving a 

tetragonal rutile with a crystal cluster of SnO2 NPs within 6 

to 10 nm.  The band gap calculation discovered values of 

4.02, 3.95, and 3.79 eV and they are being tested under a 

photocatalytic reaction to completely degraded Methylene 

Blue and Rd-Bdye, and 81% of Methyl Orange [48]. A quasi-

spherical of SnO2 NPs having sizes 3 and 6 nm with a 

tetragonal rutile phase was obtained by Osuntokun et al. after 

synthesizing leaves extract of Brassica oleracea L. var. 

botrytis with SnCl2.2H2O. The synthesis process was heated 

at 60oC for 6 hours, with subsequent annealing at 300oC and 

450oC of the precipitate. The pure SnO2 NPs discovered to 

possess band gap values of 3.9 to 4.3 eV that degraded 91% 

of Methylene Blue [49]. According to Fatimah et. al, the 

synthesis of Pometia pinnata leaves extract with SnCl2. 2H2O 

produced flower-like SnO2 NPs. The procedure was held 

under reflux for an hour. The calcination of the powder was 

conducted at 500oC for 2 hours to give a tetragonal structure 

with sizes within 8 to 20nm, signifying a band gap value of 

3.5eV which degraded almost 99% of Bromophenol Blue 

[50]. Leaves extract of Delonix elata was mixed with tin 

chloride solution, as explained by Suresh et al., before being 

treated to different procedures, which were wet-chemical, 

sonication, and microwave at a similar calcination 

temperature of 400oC for 2 hours. A foam shape of SnO2 NPs 

was obtained with crystallite sizes of 5 to 7nm, indicating 

band gap values of 3.80, 3.89, and 3.91 eV to result from 

photocatalytic degradation of Rhodamine-B at 82%, 85%, 

and 92% [51]. Wicaksono et al. clarified the synthesis process 

using leaves extract of Amaranthus tricolor L. with 

SnCl4.5H2O at 80oC within 1 hour, followed by calcination of 

the obtained powder at 400oC for 2 hours. The procedure gave 

SnO2 NPs in the polycrystalline phase, favoured to be 

spherical with a size less than 20 nm with a band gap of 3.52 

eV to degrade about 99% of Bromophenol Blue [52]. Green 

synthesis using Citrus aurantifolia fruit extract and 

SnCl2.2H2O was described by Luque et al. at 60oC. Later, the 

obtained paste was calcined at 400oC for 1 hour to give a 

tetragonal structure with a quasi-spherical shape of SnO2 NPs 

in size between 5nm to 9nm. The band gap value was 

discovered as 3.02 to 3.44 eV, which degrades about 96% of 

Methylene Blue [53]. Garrafa-Galvez et al. employed the 

fruit extract of Lycopersicon esculentum with SnCl2.2H2O to 

obtain pellets that calcined at 400oC for 1 hour, giving a 

quasi-spherical formation with 4 to 5.5nm crystallite size. 

The calculated band gap was obtained as approximately 3.3 

eV, and the synthesized SnO2 NPs were found to be efficient 

in removing all Methylene Blue entirely [54]. Another fruit 

extract, Actinidia deliciosa (kiwi) was reported to be mixed 

with SnCl4.5H2O, which was heated at 60oC for 2 hours 

duration as described by Gomathi et. al [55]. The synthesis 

obtained pellet that was further exposed to air-dried overnight 

to furnish spherical SnO2 NPs with rutile phase within size 5 

to 10 nm, indicating a band gap value of 3.96 eV. From the 

photocatalytic testing, SnO2 NPs were found competent to 

degrade 89% Methylene Blue, 87% Methyl Orange, and 97% 

Rhodamine-B accordingly. Production of pure SnO2 NPs was 

conducted by using a mixture of Trigonella foenum-graecum 

seed extract and SnCl2.2H2O as described by Goyal et al. The 

synthesis was carried out at 80oC for 4 hours, followed by the 

calcination of the jelly product at 400oC within 4 hours. The 

procedure furnished a 10 nm spherical shape of SnO2 NPs and 

indicated 2.6 eV as the band gap value, which was photo 

catalytically tested to degrade 100% Coralene Red [56]. 

Shamima Begum and Md. Ahmaruzzaman Begum in their 

work, explained the synthesis of  SnO2 NPs using Parkia 

speciosa Hassk and SnCl4.5H2O under microwave irradiation 

to give precipitate that was finally heated in the oven at 60ºC 

within 12 hours. The band gap was obtained as 4.3eV, 

facilitating about 98% degradation of Acid Yellow 23 dye 

[57]. The efficiency evidence of the green synthesized SnO2 

NPs in the degradation process using a variety of dyes is 

summarized in Table 1.
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Fig. 1. General procedure for the production of SnO2 NPs using plant extract [21]. 

 

 

 
 

Fig. 2. The synthesis of SnO2 NPs using phytochemicals from plant extracts [42]. 

 

 

 
 

Fig. 3. General reaction mechanism of SnO2 NPs performing photocatalytic [45-46]. 
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Table 1: The green synthesized SnO2 NPs using various plants and their performance on dyes degradation. 

 

3. Conclusions 

This article overviews the green synthesis of SnO2 NPs 

as safe, low-priced, environmentally friendly, trustworthy, 

and pertinent for photocatalytic applications. The synthesized 

SnO2 NPs mediated by different plants possess different band 

gap values, thus resulting in different degradation degrees for 

the dyes. The irradiation of light with appropriate frequency 

under certain band gap energy would generate superoxide and 

hydroxyl radicals at the surface of SnO2 NPs, thus facilitating 

the redox reaction in breaking down the pollutant molecules, 

resulting in a bi-product that is harmless to the human and 

ecological system. Under this photocatalytic mechanism, the 

green synthesized SnO2 NPs successfully degraded several 

types of dye pollutants within the range of 80% up to 100%, 

which proved to be an efficient and versatile photocatalyst.  
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