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Abstract 

  

  Complete time series variables of influent and effluent variables are essential for enhancing the uncertainty of processes 

within wastewater treatment plants (WWTPs). In addition to that, these time series are essential for conducting different analyses 

and simulations to enhance WWTPs design, operations, and control. However, it is very common within WWTPs to find missing 

values within these variables, which leads to replacing them using traditional approaches. For this, the current paper aims at applying 

14 univariate data imputation models, including the most commonly used ones among professionals in the field, to predict missing 

values of a time series variable (BOD5). This contribution also provides comparison tools that aim at selecting the model that yield 

the least error terms based on MAE, MSE, RMSE, and R-squared. Findings indicate that the autoregressive integrated moving 

average (ARIMA) imputation model is the most suitable to replace missing data compared to other models, as it ranks the first in 

terms of the least error terms and the highest coefficient of determination. 
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1. Introduction 

Wastewater Treatment Plants (WWTPs) are 

infrastructures existing in urban areas and generating 

biodegradation processes that naturally occur near rivers to 

remove as much suspended solids as well as contaminants 

from water before discharging it to nature or reusing it [2]. 

Many contributions indicate that the high costs of these 

facilities, that accounts for both operational and capital costs 

[1; 4], has led to the use of different simulation models that 

enable enhancing their performance [11] in terms of WWTP 

design [9], operations [5], and control [7]. Yet, one of the 

limitations of implementing these simulations relates to some 

missing experimental observations within the data sets [10], 

which is mainly caused by the high cost of experimental 

collection of these parameters. Furthermore, other reasons 

can be included, but are not limited to, the high cost and 

inefficiency of advanced technologies such as on-line 

sensors, special events such as holidays, and the lack of 

experience of personnel during some shifts [8]. It is important 

to note that WWTPs datasets are time series since they are 

recorded on consecutive periods of time to measure the 

variability of the plants’ data, which is considered as the most 

important factor to limit the uncertainty within the 

wastewater treatment processes and systems [8]. The 

following contribution provides 14 different univariate data 

imputation models including traditional ones such as 

completing data by random sample as a reference, and 

comparing them using error terms to suggest the most 

accurate one. The major empirical issue addressed in this 

research is whether if traditional data imputation methods are 

reliable or should be replaced by other data replacement 

methods. 

 
2. Materials and Methods  

 The following section will introduce the suggested 

univariate models used for missing data imputation. R studio 

was used in this research to compile models and generate 

predictions for the Biochemical Oxygen Demand for five 

days (BOD5) variable, which is a quality variable measured 

in all WWTPs. The original data represent the measured 

value of BOD5 for an Zaio, Morocco wastewater treatment 

plant for 90 consecutive days. In concordance with the 

purpose of this research, observations during week-ends were 

removed intentionally in order to predict them using different 

univariate models. This is to compare the predictions of each 

model to actual values using different tools that will be 

introduced in a later section of this paper. 

 

2.1. Missing value imputation by random sample 

 The first data replacement method uses a random sample 

that consists of replacing missing values by random values 

that ranges between the minimum and the maximum values 

of the sample’s observations. This method is very common 

among professionals, and while it is considered as statistically 

correct, it results in different types of bias when it is used to 

make further statistical inferences. 
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2.2. Missing value imputation by inferential statistics 

 For the second imputation method, it consists of 

replacing missing values by different inferential statistics that 

are mainly the mean, the median, or the mode of the sample 

observations [13]. This method is used as a reference method 

since it is one of the most common techniques used among 

professionals. 

 

2.3. Missing value imputation by observations carried 

backward or forward 

 Within this section, two main data replacement methods 

are introduced. The first method is imputation using the last 

observation carried forward that is also referred to as LOCF. 

The main assumption of this method indicates that the last 

observed value will not change over time [15]. But for the 

second imputation method, which is the next observation 

carried backward (NOBD), it refers to the reverse direction 

of the LOCF method, as it duplicates the next value 

backward. 

 

2.4. Missing value imputation by interpolation 

 Interpolation is a method of estimating missing values by 

relying on actual observations. The first method used in this 

section is the linear interpolation [14]. This method uses a 

linear function to find the approximation of the value of a 

function f(x) such as: 
𝐿(𝑥) = 𝑎(𝑥 − 𝑥𝑘) + 𝑏 (1) 

In this case, both parameters (a and b) are selected in a way 

that makes the values of the function L(x) in accordance with 

the values of the function f(x) such as: 
𝐿(𝑥1) =  𝑓(𝑥1) (2) 

These conditions are satisfied by the given function: 

𝐿(𝑥) =
𝑓(𝑥2) − 𝑓(𝑥1)

𝑥2 − 𝑥1

(𝑥 − 𝑥1) + 𝑓(𝑥1) (3) 

Which approximates within the interval [𝑥1, 𝑥2] the function 

f(x), taking into account the error by the following formula: 

𝑅𝑓 = 𝑓(𝑥) − 𝐿(𝑥) =
𝑓"(𝜉)

2
(𝑥 − 𝑥1)(𝑥 − 𝑥2), 𝜉 ∈ [𝑥1, 𝑥2] (4) 

Concerning the Spline interpolation, it consists of using 

piecewise polynomials to approximate the function f(x). It is 

different from the linear interpolation as it should satisfy 

further conditions such as the cubic Spline [16]. Thus, the 

function to approximate the Spline interpolation should 

satisfy the following relation: 

∫ [𝑓(𝑘)(𝑡) − 𝑆2𝑘−1
(𝑘) (∆𝑛 , 𝑡)]

2
𝑑𝑡 = ∫ [𝑓(𝑥)(𝑡)]

2
𝑑𝑡 − ∫ [𝑆2𝑘−1

(𝑘) (∆𝑛, 𝑡)]
2
𝑑𝑡

𝑏

𝑎

𝑏

𝑎

 
𝑏

𝑎

(5) 

Where 𝑆3(∆𝑛, 𝑥) is an example of the cubic Spline where  ∆𝑛 

is the partition 𝑎 = 𝑥0 ≤ 𝑥1 ≤ ⋯ ≤ 𝑥𝑛 , the two end points 

that are reconstructed by piecewise cubic polynomials and 

has a continuous second order derivatives [16]. 

For the Stine interpolation, it was developed by Stineman, 

and it is faster and more accurate from 2 and 6 times 

compared to the cubic spline interpolation. This method 

provides more or less similar results as the spline and linear 

interpolation, yet, the only advantage is that it is more reliable 

in the case where the variable presents an abrupt change in 

slope [3]. 

 

2.5. Missing value imputation by structural model & 

Kalman Smoothing and ARIMA 

 In this section two models are discussed that are ARIMA 

modeling and the Structural modeling. Concerning ARIMA, 

which stands for auto-regressive integrated moving average, 

it was first introduced by Box and Jenkin in 1976, and its 

general equation of successive differences at the dth 

difference is given such as: 
∆𝑑𝑋𝑡 = (1 − 𝐵)𝑑𝑋𝑡 (6) 

Where d is the difference order. In this work, the general 

ARIMA (p,d,q) is expressed as: 
Φ𝑝(𝐵)𝑊𝑡 = θ𝑞(𝐵)𝑒𝑡 (7) 

Where Φ𝑝(𝐵) is an autoregressive operator of order p,  θ𝑞(𝐵) 

is a moving average operator of order q, and 𝑊𝑡 =  ∆dX𝑡. 

Concerning the Kalman filter that uses structural modeling, it 

uses a recursive procedure for computing the optimal 

estimator of the state vector at time t, based on the 

information available at time t. 

 

2.6. Missing value imputation by moving average 

 Regarding this section, the data replacement method is 

moving average. This method consists of replacing a specific 

missing value using weighted moving average values on both 

its sides. For instance, and in order to impute a missing value 

at a specific location i, the weighted average of 

𝑦𝑖−2, 𝑦𝑖−1, 𝑦𝑖+1, 𝑎𝑛𝑑 𝑦𝑖+2 are used to calculate the moving 

average window size of 4 [6]. It is important to note that this 

contribution includes three types of the moving average 

imputation models that are [6]: 

• Simple moving average: That assumes that all 

observations used are equally weighted. 

• Linear weighted moving average: That assumes that 

the weights of the used observations are decreasing 

in an arithmetic progression. 

• Exponential weighted moving average: That 

assumes that the weights of the used observations 

are decreasing exponentially. 

 

2.7. Comparison method 

 This section will present the tools that will be used to 

compare between the actual values, and the ones resulting 

from each univariate model used in this contribution. The 

methods used are referred to as absolute prediction error that 

is based on the absolute error calculation based on the 

calculation of the value: 

𝑒𝑡 = 𝑦𝑡 − 𝑓𝑡
(𝑚)

 (8) 

Where 𝑦𝑡  is the actual value, and 𝑓𝑡
(𝑚)

 is the predicted value 

at time = t using the model m. This accounts for the mean 

absolute error (MAE), mean square error (MSE), and the root 

mean square error (RMSE); These variables are defined such 

as MAE is the measure of the absolute difference between the 

observed and the predicted values, MSE is the average 

squared error for the prediction values and RMSE accounts 

for the square root that is introduced to make scale of the 

errors to be the same as the scale of the target. It is important 

to note that the selection of the best univariate model to 

predict the missing values of the variable BOD5 will be based 

on the lowest error terms of all models. The models in this 

contribution will also be compared using the R-square (R2) 

that is also referred to as the coefficient of determination. This 

coefficient has a magnitude restricted between 0 and 1, which 

measures the proportion or the percentage of dependent 

variables that are explained by an independent variable. The 

higher the value of R-square, the better the model of data 

prediction fits actual values. 

 



24(4) (2023):463-468 
 

A. CHAOUI et al., 2023     465 
 

 

3. Results and Discussion 

 The following contribution used R in order to compile 

and graph the different prediction models as displayed in 

Appendix A. The MAE, MSE, RMSE, and R2 were used as 

the comparison tool for the applied models in order to 

compare the error terms. These latter are considered as a 

decision tool in the case of this contribution to assess the data 

imputation model that predicts the best missing values for the 

case of the time series variable BOD5. Comparison results 

were sorted based on the MAE in Table 1.  

The most basic data imputation models used among 

professionals in the wastewater treatment industry are by 

random sample, least observation carried forward, next 

variable carried backward, and data imputation models using 

inferential statistics. While all of these models are statistically 

correct, findings indicate that they don’t take part of the top 5 

models in terms of least error terms, without any 

contradiction between all comparison tools. For the MAE, it 

resulted in values of at least 8.00 for these latter models, 

compared to a value between 5.01 and 5.99 of the top five 

models. Concerning the MSE, it resulted in values of at least 

405.00 for traditional models compared to a value between 

219.80 and 280.20 for the first five best models. This aligns 

with the findings of the RMSE, as this latter resulted in a 

value of at least 20.12 for traditional models compared to a 

value between 14.83 and 16.74 for the top five models. 

Results indicate that traditional data imputation models are 

highly likely to yield a bias in further analyses, which is 

mainly due to the high error term, and the lower values of the 

coefficients of determination (R2) compared to other 

univariate models. E.g. the R2 of the random sample indicates 

that only 41% of the variations are explained by the 

independent variable, that is the actual time series variable 

(BOD5). 

 
Table1: MAE, MSE, RMSE, and R2 using different imputation 

models. 

Time series model MAE MSE RMSE R2 

ARIMA 5,01 219,80 14,83 0,96 

Structural model 5,04 221,23 14,87 0,96 

Simple moving average 5,36 236,68 15,38 0,95 

Linear moving average 5,65 244,91 15,65 0,95 

Exponential moving 

average 
5,99 280,20 16,74 0,94 

Linear interpolation 7,17 512,78 22,64 0,90 

Data imputation using 

the mode 
8,00 405,00 20,12 0,91 

Least observation 

carried forward 
8,25 471,25 21,71 0,91 

Stine interpolation 8,25 582,70 24,14 0,89 

Data imputation using 

the median 
9,50 490,00 22,14 0,89 

Next observation 

carried backward 
12,50 1371,25 37,03 0,75 

Data imputation using 

the mean 
13,15 826,30 28,75 0,82 

Spline interpolation 16,24 1566,17 39,57 0,72 

Random Sample 30,65 5716,90 75,61 0,41 

 

Comparison tools indicate that among the data imputations 

models applied in this contribution, ARIMA is the most 

suitable one for predicting and replacing data, followed by the 

structural model, simple moving average, linear moving 

average, and then, exponential moving average. 

 
4. Conclusions 

 This paper puts emphasis on the importance of having 

complete datasets of influent and effluent data in WWTPs 

that will enable conducting further analyses, simulations, and 

forecasting to enhance the efficiency, the monitoring, and the 

control of these plants. Measuring experimental values with 

high frequencies (e.g. daily basis) always enhances the 

quality of WWTPs’ monitoring and control. Yet, in real life 

situations, professionals measure quality variables (e.g. 

BOD5) only twice or three times per week, which limits 

analyzing the plants’ uncertainty, or conducting further 

analyses. In some cases, this latter situation urges 

professionals to complete different time series variables using 

basic and simple univariate data imputation models such as 

replacing missing values with random variables between the 

minimum and the maximum values, or duplicating the last 

observed values. Thereby, the current contribution compares 

between 14 different univariate data imputation models and 

includes the commonly used ones among professionals as a 

reference. In the context of this study, results show that 

ARIMA is the most suitable univariate model for data 

replacement. This is because it was ranked first with regards 

to models that have the least error terms using MAE, MSE, 

and RMSE. Furthermore, this model also has a high 

coefficient of determination that indicates that more than 96% 

of the total variations are explained by the independent 

variable. Additionally, it is important to note that data 

imputation using a structural model or a simple moving 

average also have low error terms, and can also be applied to 

predict missing data. 
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Appendix A: Data imputation graphs: 

 
Figure A.1: Data prediction using random sample 

 
Figure A.2: Data prediction using the mean 

 
FigureA.3: Data prediction using the median 

 
Figure A.4: Data prediction using the mode 

 
Figure A.5: Data prediction using the least observation 

carried forward 

 
Figure A.6: Data prediction using the next observation 

carried backward 

 
Figure A.7: Data prediction using linear interpolation 

 
 

Figure A.8: Data prediction using spline interpolation 

 
Figure A.9: Data prediction using stineman interpolation 

 
Figure A.10: Data prediction using structural model & 

Kalman smoothin 

 
Figure A.11: Data prediction using ARIMA 

 
Figure A.12: Data prediction using simple moving average 
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Figure A.13: Data prediction using linear weighted moving 

average 

 
Figure A.14: Data prediction using exponential weighted 

moving average 

 


