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 Abstract 

Diabetes mellitus is the most common metabolic illness. Type 2 diabetes mellitus (T2DM) accounts for about 537 

million people worldwide with prediction of an increase in the future. T2DM has several complications including cardiovascular, 

renal, and neurological complications. A large growing data demonstrated that T2DM affects negatively the cognitive domains 

leading to defects in learning and memory loss especially in elderly patients. The pathophysiology of diabetes-induced cognitive 

deficits includes neuroinflammatory pathways, apoptotic pathways, and defects in proliferator-activated receptor-gamma co-

activator 1α / fibronectin type III domains containing protein 5/ Brain-derived neurotrophic factor (PCG1-α /FNCD5/BDNF) 

signaling. Exercise training and Vitamin D supplementation are hopeful therapy have been recognized to improve cognitive 

dysfunction due to diabetes mellitus.  
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1. Introduction 

According to an epidemiological study, 537 million 

people worldwide have diabetes, and as the population ages 

and individuals live longer, this figure is predicted to rise to 

over 783 million by 2045[1]. Worldwide, diabetes mellitus 

is a common metabolic disorder. More than 90% of people 

with diabetes have type 2 diabetes mellitus (T2DM), which 

results in micro and macrovascular issues that are extremely 

distressing for both patients and caregivers [2-3]. T2DM is 

characterized by insulin resistance in target organs and 

pancreatic β-cell dysfunction which leads to insulin 

deficiency (4). Bad dietary habits and a sedentary lifestyle 

are non-physiological factors that contribute to the 

development of T2 DM diabetes. Diabetes is a metabolic 

illness that negatively impacts several brain areas, including 

the hippocampus, and raises the risk of cognitive decline (5). 

T2DM leads to many chronic complications, including 

peripheral neuropathy, diabetic retinopathy, and 

cardiovascular disease. [4].  

2. Impact of diabetes on cognitive function  

Diabetes mellitus, both type 1 and type 2, has been 

linked to decreased cognitive function. Diabetes can cause 

cognitive abnormalities even in its very early stages. the  

 

type and severity of cognitive impairment affected by 

glycemic control and the duration of diabetes [5]. T2DM 

patients run the risk of having poor cognitive function 

brought on by memory loss and executive dysfunction. [6-

7].  

3. Manifestation of cognitive impairment in the diabetic 

patient  

Type 2 diabetes mellitus is closely linked to 

structural abnormalities of the brain and decreased 

performance across many cognitive function domains. With 

the increasing diabetes epidemic and aging population, 

neural complications of diabetes are expected to increase 

and become a future health challenge. Understanding the 

manifestation of cognitive impairment, pathophysiology and 

factors associated with this problem is essential for proper 

dealing with this potentially distressing sequence of T2DM 

[8]. Learning and memory abilities were specifically 

assessed in elderly diabetic patients and it was found that 

diabetic patients performed worse than age-matched non-

diabetic comparison subjects. Deficits appear to be most 

prevalent in list learning tasks when the subject is required 
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to recall a list of words in any sequence after hearing or 

seeing them one at a time. In older persons with Type 2 

diabetes, memory, or the capacity to recall information 

minutes or hours after initially being exposed to it, is also 

affected. Adults with long-term Type 1 diabetes rarely 

experience problems with their learning or memory [9]. 

Lower baseline levels of memory, executive functioning, 

language, processing speed, and visuospatial ability were 

associated with diabetes mellitus. Although persons with 

diabetes mellitus have a bad cognitive function, both those 

with and without this disease exhibit equal rates of cognitive 

change. These results indicate that cognitive alterations may 

appear early in the course of diabetes mellitus and stress the 

need for studies to start following patients at least in midlife, 

before the typical later-life onset of dementia [10]. 

4. Pathogenesis of diabetes-induced cognitive 

impairment 

The mechanisms underlying diabetic cognitive 

impairments are multifactorial, including neuro-

inflammatory pathways, apoptotic pathways, and defects in 

proliferator-activated receptor-gamma co-activator 1α / 

fibronectin type III domains containing protein 5/ Brain-

derived neurotrophic factor (PCG1-α /FNCD5/BDNF) 

signaling. 

4.1. Hippocampus neuroinflammation and apoptosis  

One of the areas of the brain most susceptible to 

metabolic disorders, such as diabetes mellitus, is the 

hippocampal region. [11].  The left and right hemispheres of 

the brain each contain an individual hippocampus, which is 

a paired structure with a horseshoe shape. [12]. A crucial 

part of the limbic system, the hippocampus is essential for 

the development of memories as well as emotional, sexual, 

and adaptive behaviors [12]and also is critical for the 

formation of new memories, hippocampus structural damage 

primarily affects recently acquired memories, but previously 

acquired old memories remain unaltered [13]. Studies have 

demonstrated that cell proliferation continues in the 

hippocampus constantly. This unique hippocampal 

production of neurons in the adult brain is necessary for 

memory formation [13, 14]. According to epidemiologic 

studies, the development of inflammatory biomarkers is 

related to type 2 diabetes mellitus and its complications. 

Patients with diabetes have elevated serum levels of 

interleukin-6 (IL-6), C-reactive protein, and tumor necrosis 

factor-alpha (TNF-alpha) [15]. Hyperglycemia induced 

damage in the Neurons of the cortical and hippocampal 

functional areas, which can result in severe spatial learning 

and memory dysfunction. It has been demonstrated that 

excessive immune system activation is an important factor 

in the appearance of T2DM [16]. The nuclear translocation 

of nuclear factor-kappaB (NF-κB)  and its linked death-

related proteins, such as cysteinyl aspartate-specific 

proteases (caspases) and TNF-α may increase brain injury 

induced by diabetes [17].Inflammatory cytokines including 

IL-6 and TNF- are persistently increased in patients with 

metabolic syndrome. surprisingly, higher inflammatory 

markers were linked to decreased executive function in 

those with metabolic syndrome[16].  

Diabetes mellitus causes oxidative stress through 

the self-oxidation of glucose, protein glycosylation, and 

polyol processes free radicals are generated.  Persistent cell 

damage is caused by decreased antioxidant levels and 

increased amounts of reactive oxygen species [18]. 

Neuroinflammation in the hippocampus leads to oxidative 

stress, which in turn, becomes a source of inflammation. In 

reality, this harmful chain reaction has significantly 

contributed to diabetes-induced cognitive impairment [19]. 

It has been found that diabetes-related hippocampus 

neuronal cell loss may be mediated by apoptosis. According 

to reports, apoptosis has a role in neurodegenerative diseases 

like Alzheimer's disease [20, 21]. It’s reported that 1 and 

type 2 diabetes have a hurt impact on dendritic remodeling, 

diminished hippocampus neurogenesis, and increased 

apoptosis [22]. Apoptosis is a metabolically active, tightly 

controlled, genetically encoded, and physically different 

form of programmed cell death [21].  

The extrinsic pathway, also known as the death 

receptor-mediated pathway or the caspase pathway, and the 

intrinsic pathway, also known as the Bcl-2 regulated or the 

mitochondrial pathway which is accompanied by both pro-

apoptotic and anti-apoptotic signals, are two separate 

processes by which apoptosis occurs [23]. Bax is a pro-

apoptotic factor and one from the Bcl-2 family member 

which is a set of cytoplasmic proteins that regulate apoptosis 

[24, 25]. Bax was first discovered as a protein from various 

cell lines that co-immunoprecipitated with Bcl-2. Analysis 

of the Bax protein's amino acid sequence revealed that Bcl-2 

and Bax are extremely similar. The cells died by apoptosis 

at a much higher rate than normal. As a result, Bax was the 

first Bcl-2 family member to be recognized as an apoptotic 

promoter [26]. Members of the Bcl-2 family act as crucial 

mitochondrial pathway regulators of apoptosis. Members of 

this family include both cell death inducers and inhibitors. 

The BH1, BH2, BH3, and BH4 conserved homology 

domains are present in members of the Bcl-2 family. Bax 

causes cell death by homodimerizing and heterodimerizing 

with Bcl-2 and other Bcl-2 protein family members [27]. 

 

4.2. Role of PGC-1α  

The translational co-activator peroxisome 

proliferator-activated receptor gamma coactivator-1α (PGC-

1α) is highly expressed in different oxidative tissues 

including the brain, skeletal and cardiac muscle, brown 

adipose tissue, and the kidney (29). The structure of PGC-1α 

is composed of the N-terminal region (aa1-200), the middle 

region (aa200-400), and the C-terminal region (aa400-797) 

[28]. PGC-1α is a transcriptional coactivator that regulates 

the energy metabolism-related genes and also regulates 

mitochondrial biogenesis and activates the expression of 

multiple detoxifying/antioxidant enzymes, so it strongly 

maintains the equilibrium between the synthesis and 

scavenging of pro-oxidant chemicals and regulates cell 

metabolism [29]. Because there are more mitochondria 

numbers, PGC-1α may convert the white fat appearance and 

physiology into that of brown fat increasing thermogenesis.  

https://08101opli-1103-y-https-www-sciencedirect-com.mplbci.ekb.eg/topics/medicine-and-dentistry/cognitive-defect
https://08101opli-1103-y-https-www-sciencedirect-com.mplbci.ekb.eg/topics/medicine-and-dentistry/cognitive-defect
https://08101yuob-1103-y-https-www-sciencedirect-com.mplbci.ekb.eg/topics/neuroscience/hyperglycemia
https://08101yuob-1103-y-https-www-sciencedirect-com.mplbci.ekb.eg/topics/neuroscience/brain-injury
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Figure 1: Role of PCG1-α in mitochondrial biogenesis  [30]. PGC1-α peroxisome proliferator-activated receptor-γ co-activator 

1α, UCPs uncoupling proteins, ROS reactive oxygen species.  

 

 

In addition, in an animal model, higher PGC-1 

expression was observed to prevent systemic chronic 

inflammation and insulin resistance as well as aging-related 

sarcopenia and bone loss [30]. Brain PGC-1α is 

downregulated in the T2 DM rat model [31]. Elevated PGC-

1α  level in the hippocampus protects neurons from 

apoptosis by activation of anti-oxidant genes and also 

promotes the formation and maintenance of synapses[32]. 

Brain PGC-1α expression is increased in response to 

physical exercise which acts as a Signal that relays 

metabolic needs[33]. 

4.3. Role of FNDC5  

FNDC5 (fibronectin type III domains containing 

protein 5) is a glycosylated type I membrane protein. The 

proteolytic cleavage of FNDC5 yields irisin, which has 112 

amino acids. The FNDC5 gene, which has 6 exons and 5 

introns, is found on chromosome 1p35.1 [34]. In both 

human and animal samples, FNDC5 is found in the heart, 

liver, skeletal muscle, brain, ovary, kidney, spleen pancreas, 

lung, prostate, adipose tissue, intestine, and colon[35]. It is 

known that FNDC5 is highly expressed in the brain's 

hippocampus, cerebellar Purkinje cells, and hypothalamus, 

among other areas [34]. Overexpression of FNDC5 in 

primary cortical neurons enhanced cell survival, but FNDC5 

knockdown in neural precursor cells impaired neuronal and 

astrocyte development and decreased cell survival [36, 37].   

PGC-1α regulates neuronal FNDC5 gene 

expression (35) and Brain derived neurotropic factor 

(BDNF) expression was elevated in primary cortical neurons 

by the expression of FNDC5. [38]. Numerous studies 

demonstrated that exercise can induce adult hippocampal 

neurogenesis through an increase in both BDNF and 

FNDC5, helping improve cognitive dysfunction in a mouse 

model of Alzheimer’s disease [39]. A previous study 

demonstrated that diabetes reduces the mRNA expression of 

FNDC5 in muscle [40], so further studies are needed to 

clarify the effect of Type 2 diabetes on the FNDC5 

expression in the hippocampus and diabetes induce 

cognitive impairment. 

4.4. Role of BDNF  

Brain-derived neurotrophic factor (BDNF) has 27-

kDa polypeptide that binds to the unselective p75NGFR 

receptor and high-affinity protein kinase receptors (Trk). 

Four promoters that are differently expressed in central or 

peripheral tissue with multiple regulatory elements make up 

the structure of the BDNF gene complicated [41]. The 

human brain's multiple regions, including the hippocampus, 

the area responsible for learning and memory, express 

BDNF. BDNF is a member of the neurotrophins’ 

superfamily, plays a crucial role in modulating synaptic 

transmission in the brain by regulating the maintenance, 

growth, and survival of neurons in animals and humans 

since it can protect against neuroinflammation and neuronal 

degradation[42]. It has been hypothesized that BDNF is an 

important factor in long-term memory induction and 

consolidation and persistent strengthening of synapses 

depending on recent forms of activity[43]. Numerous 

organs, such as the skeletal muscle, retina, prostate, kidneys, 

and platelet, express BDNF[44]. Synaptic plasticity means 

the process by which synapses change in strength regarding 

an increase or decrease in synaptic transmission, so Synaptic 

plasticity is considered a functional term. The strength of 

transmission physiologically changes are often associated 

with alterations in the structure of the synapses. Because 

synapses were believed to be the site of storage for brain 

memories, synaptic plasticity is considered to be the cellular 

mechanism for learning and memory [43].  According to the 

findings of Zhen et al. (2013). BDNF may be involved in the 

pathogenesis of cognitive impairments, particularly delayed 

memory in T2DM [45] . it was demonstrated that BDNF 

secretion in the brain is suppressed by hyperglycemia [46]. 

In another recent research, the overexpression of BDNF in 
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the hippocampus of the brain prevents neuroinflammation 

that develops in diabetes' hyperglycemic stress conditions as 

well as the decline of synaptic plasticity[47]. 

Diabetes causes the brain to experience significant 

oxidative stress and hyperglycemia that in diabetic patients 

activates the advanced glycation end products- receptor for 

advanced glycation end products (AGE-RAGE ) axis, which 

then induces neuroinflammation, decreases the long-term 

potentiation, develops vascular dysfunction, and decreases 

BDNF levels in the brain [48]. 

5. Possible new therapy  

5.1. Exercise and brain function  

It is well-recognized that engaging in regular 

physical activity improves cardiovascular health and lowers 

the risk of developing metabolic disorders. Additionally, 

regular exercise has been shown to lower the incidence of 

dementia and depression. [49]. Light and moderate physical 

activity, seem to be good for mental function in people with 

T2 DM. Diabetes is linked to decreased cognitive function 

scores, especially when poorly controlled, and regular 

physical activity may prevent some of the cognitive 

deterioration that could occur [50]. Recently, a 16-week 

progressive treadmill exercise program was reported to 

enhance an upregulation in SIRT-1 and PGC-1α [51]. Early 

on throughout endurance training, Before the expression of 

PGC-1, PGC-1 is activated leading to mitochondrial 

biogenesis in the skeletal muscle of humans and also 

mitochondrial biogenesis enhanced in long-term endurance 

exercise by stimulating the p38 mitogen-activated protein 

kinase (MAPK), which activates the PGC-1 transcription 

factor increasing PGC-1 expression [52]. A conceivable 

mechanism for how exercise protects neurons and enhances 

cognitive function is through the induction of neurotrophins 

such as Brain-derived neurotrophic factor. While it has been 

suggested that exercise increased cerebral blood flow, 

oxygen, and nutrient delivery to neurons, as well as 

clearance of metabolic waste, this is only one possible 

mechanism. [53]. It was discovered that there is a direct 

relationship between physical activity and cognitive ability 

because exercise causes an increase in hippocampal volume, 

confirming that physical activity can alter the physiological 

function and anatomical structure of the brain [54]. 

5.2. Vitamin D and brain function  

Traditional knowledge of vitamin D (VD) refers to 

it as a steroid hormone for calcium metabolism, bone 

functions, and numerous physiological processes, including 

inflammation and glucose homeostasis are influenced by 

vitamin D. The hippocampus, the pancreas, Adipose tissue, 

and the intestinal barrier epithelium and are just a few of the 

tissues that have a lot of VD receptors. Because it crosses 

the blood-brain barrier, it may also play a role in brain 

activities. It has been demonstrated that the brain contains a 

large number of the vitamin D receptors and enzymes 

necessary for its function [56, 57]. Low vitamin D levels 

have been associated with fractures, different autoimmune 

diseases, diabetes mellitus, cardiovascular disease, 

malignancy, falls, and depression [58, 59]. One of the key 

risk factors for dementia has been identified as vitamin D 

insufficiency [60]. Alpha-1-hydroxylase activates vitamin D 

to its activated form in many areas of the central nervous 

system (CNS), particularly the hippocampus. Through 

detoxifying processes and the production of neurotrophins, 

vitamin D3 may safeguard the integrity and structure of 

neurons [61]. 

According to prior studies, persons with type 2 

diabetes who had lower serum levels of vitamin D have 

milder cognitive impairment [62]. Vitamin D3 

supplementation may have a protective impact on the brains 

of diabetic animals by improving the cholinergic 

transmission in the prefrontal cortex [63]. In VD-deficient 

T2D patients, VD supplementation may ameliorate T2D by 

lowering HbA1c and raising SIRT1 and irisin [64]. Another 

study discovered that vitamin D restored cognitive deficits 

brought on by a high-fat diet (HFD) by lowering 

concentrations of nuclear factor kappa light chain enhancer 

of activated B cells (NF-B) and increasing BDNF in the 

hippocampal region in the brain [65].  

 

Recommendations 

Firstly, Screenings for cognitive impairment in 

high-risk groups and advice on managing diabetes for 

diabetic patients with cognitive deficiencies. Second, 

although there are still some questions about the preventive 

role of vitamin D in the neurodegenerative effects of 

diabetes, more research in this area is necessary. 
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