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Abstract 

  The impact evaluation of CC is now a global issue receiving more attention. Water resources and grain production are 

being seriously impacted by Climate Change (CC). It is essential to develop scientific research in the areas related to CC and raise 

grain output to assure food security, boost farmer income, and maintain social stability. Established on the original Cobb-Dougla 

(C-D) production function, this work develops a new economic-climate model that includes climate factors, empirically examines 

how CC impacts grain yield and emphasizes regional variability. There are also suggested restrictions on agricultural planting 

structure and agricultural productivity due to water resource limitations. The association between the usage of irrigation water in 

addition to irrigation is suggested founded on the evaluation of the parallel between Climatic Change as well as grain harvest. 

Toward a perfect level, human influences like agricultural technological advancement, policy mechanism assurance, and increased 

farmland water conservation building investment can reduce all types of adverse results of CC on the Chinese agricultural Water 

supply (WS). 
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1. Introduction 

 

The consequences for water supplies (WS) rank 

among the most substantial repercussions of global warming 

for society. Potable water must be available in sufficient 

quantities for human habitation. The demand for 

consumptive uses like WS, then non-consumptive services 

such as navigation, industrial cooling, instream flow benefits 

of fresh water, and hydroelectric power generation, are 

frequently outweighed by sustainable surface as well as 

groundwater sources [1]. In the previous three decades, rice 

has provided 27%–29% of the nation's total area planted 

with grains and 32%–54% of its overall crop output. The 

ability of farmers to grow rice is hampered by concerns 

about global warming, water scarcity, and other issues [2]. 

Higher temperatures often negatively influence food yields 

in most locations by fast-tracking crop yield growth, 

decreasing the growing season, or amplifying additional 

factors like warming-driven drought and compound dry-hot 

events. 

Conversely, warming may favor crop output in 

other regions, such as heat deficits and those with adaptation 

strategies (such as changing cultivars, planting dates, and 

irrigation types), t. Therefore, it is difficult to predict  

 

 

potential changes in agricultural output as a result of global 

warming due to the various ways by which temperature 

influences crop development [3]. Generally speaking, global 

warming speeds up crop development, moves maturity 

forward, and moves flowering time forward. The 

significance of listing genotype management environment 

combinations over the long run is highlighted by the fact 

that these ostensibly small changes brought on by 

management and climate variability can result in significant 

variations in profitability. While previous global warming 

has accelerated flowering times, it is currently unknown 

how much OFP has altered due to the climate or how OFP 

interacts with the effects of irrigation [4]. Because direct 

observation has limitations, Evapotranspiration (ET) is 

frequently approximated at continental in addition to global 

scales using model modeling, remote sensing retrieval, and 

upscaling of direct studies. Machine learning techniques for 

estimating surface fluxes based on data similar to flux 

towers, satellite remote sensing, and weather station 

observations have grown in popularity in recent years due to 

their accuracy in computing observed surface fluxes [5]. 

The paper [6] focused more on the effects of individual 

climatic conditions than on the effectiveness of agronomic 

practices in crop water consumption. Research has been 

done on the shifting responses of crop water usage 

efficiency to climatic factors (temperature and precipitation) 

and agronomic techniques (fertilization and cropping 

patterns) in semi-arid environments based on long-term field 
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observations and experiment data. The paper [7] harmed 

Warming temperatures frequently affect crop yields; 

however, it is uncertain if water availability impacts global 

products to temperature stress. Using satellite-based 

information, they present empirical estimates of the 

worldwide yields of sorghum, millet, soybeans, and grain as 

a function of surface air temperature and soil moisture in the 

root zone. The paper [8] intended to conceptually engineer 

how climate unpredictability harms sustainability across 

some industries internationally. Everyone should be 

concerned about the agricultural sector's fragility, mainly 

because of the threat that unpredictable weather fluctuations 

pose to adequate output and food supply. The LRB was 

originally this Model for Soil and Water Assessment 

(SWAT). Through calibrating City-level corn (Zea mays L.) 

yields, actual evapotranspiration (ETa) values were 

calculated using the Surface Energy Balance System (SEBS) 

model, and the SWAT model employed [9]. Temporal and 

geographical influence and pattern variables about Crop 

Water Productivity (CWF) concentrate on statistical and 

correlation analyses with little attention to attribution 

research or element significance examination of CWF 

regional differences [10]. The paper [11] provided 

geographic average yield change trends for each crop model 

that, lacking the requirement as further simulations using 

climate and crop models, allow for a more straightforward 

explanation of yield alterations under random paths about 

increases in the CO2 levels and average world temperature. 

The research [12] focused on environmental, genetic, and 

managerial factors to identify the primary sources of 

variance in Global Warming Potential (GWP) and winter 

wheat yield in Poland, scaled by yield. Coffee is a 

particularly vulnerable plant species to ongoing climate 

change, one of the most popular traded agricultural 

commodities globally. The physiological responses of the 

coffee plant to high atmospheric Carbon Dioxide 

Concentration [CO2] are summarized below based [13]. The 

paper [14] randomized trials are conflicting, and variety in 

rice cropping methods and meteorological circumstances 

hinder country-scale yield estimations. It is predicted that 

climate warming will affect rice yields. According to a 

meta-analysis of field warming, China's many rice cropping 

methods had quite different yield responses to warming. 

Climate variables included in an updated version of a Cobb-

Dougla (C-D) production function-based economic model 

conducts an empirical analysis of where climate change 

affects grain output and highlights regional variations. On 

agricultural output and planting layout, restrictions on water 

resources are also suggested [15]. 

The following sections of the article are organized: 

The materials and techniques are summarized in Section II; 

Section III presents the recommended results and discussion 

in more depth. Section III concludes the study and offers 

suggestions for more research. 

 

2. Materials and methods 

 

CC significantly affects the impact production of 

grains. Integrating CC with economic studies to investigate 

solutions to lessen how CC affects agricultural productivity 

is crucial. It can be demonstrated that the model accuracy is 

consistent with the evolution of agricultural production 

under the effect of CC by incorporating climate variables 

hooked on the production performance standard of 

economics. Future grain production can be simulated, tested, 

and estimated using the air circulation model (GCM) and 

regional climate model results. The model's development 

and computation are made more accessible by the ease with 

which the Cobb-Douglas production function (C-D 

production function) may be normalized. The following 

equation (1-6) is how the logarithms of both sides express 

the relationship: 

 

𝑖𝑛𝑌 = 𝑖𝑛𝑎 + 𝑏1𝑖𝑛𝑥1 + 𝑏2𝑖𝑛𝑥2 + 𝑏3𝑖𝑛𝑥3            (1) 

Taking  

Then the equation stated above becomes 

𝑦 = 𝑎0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3   (2) 

A linear function model is the one presented above. 

It can see how altering the input variables affect the 

outcome by rebuilding it. To ascertain the precise value of 

each parameter, perform a regression analysis on the three 

input variables, specifically land𝑋1, labor 𝑋2, and capital 𝑋3 

as well as natural logarithm output (Y). 

It is not necessary for the dimensions of the 

variable quantity to an identical when utilizing the function 

model to analyze how independent variables affect 

dependent ones. The economically significant factors for 

each production factor are related to the simple parameters 

a,𝑏1𝑏2, and 𝑏3. As an illustration, the quantity of labor input 

can be calculated using the labor force or labor days. Still, 

the amount of output can be determined using output value 

or yield. 

The function model's elasticity coefficients 𝑏1𝑏2, 

and 𝑏3 may provide a reasonable approximation of the 

actual grain production. However, when used to fit historical 

data, his precision of the C-D manufacturing model does not 

always exhibit satisfactory consistency. The primary cause 

of this is that different items have unique function 

relationships between their outputs and inputs, and the 

production process for the research item typically involves a 

significant amount of multi-structure. Also, the chosen data 

needs to have the necessary scientific integrity and rigor. 

With a set of specific coefficients and a determined 

production function, the practical connection among the 

production of grains and three input factors, such as labor, 

money, and technology, can only be weakly represented. 

Based on this, a new model is developed to enhance the 

current one. The new model's numerous aspects must be 

explored to simplify and abstract the roles of various 

components as much as possible. 

The C-D-C model develops the traditional C-D 

production function model since the issue connects with CC 

effect studies and economics. The following is the 

appearance of the latest design, assuming that C is the model 

parameter denoting the CC factor:  

 

𝑌𝑖 = 𝑋1
𝛽1𝑋2

𝛽2𝑋3
𝛽3𝐶𝑟𝜇    (3) 
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This planting area, fertilizer input variables as well as labor 

force, are denoted by 𝑋1, 𝑋2, and 𝑋3, respectively, and the 

output resistances of the input mentioned above components 

are represented by 𝛽1,𝛽2, and𝛽3. The new model 

distinguishes the classic C-D production functions' 𝑏1, 𝑏2, 

and 𝑏3 by 𝛽1,𝛽2 and𝛽3, which stand for the various output 

elasticities of multiple models—the output elasticity 

corresponding to the parameter C, which measures the 

influence of CC.In the circumstance of the belongings of CC 

on crop output, it primarily examines the impact caused by 

the inclusion of CC factor C. 

Since crop manufacture depends on environmental 

factors, resource inputs, and scientific and technological 

advancements, climatic and socioeconomic factors impact 

production variability. The impartial variable quantity of the 

practical standard, such as the climate and the crop 

production input variables, are presented as C-D-C. The 

climate variables choose the standard temperature as well as 

mean precipitation during the rice growing season, while the 

crop production input variables specify the planting area or 

acreage of rice, the number of agricultural workers, the 

overall function of agricultural machinery, with the 

introduction of agrarian chemical fertilizer: 

This study composes an empirical C-D-C model 

using the aforementioned explanatory elements in the way 

shown below: 

𝑖𝑛𝑌𝑖𝑡 = 𝑎0 + 𝑏1𝑖𝑛(𝑇𝑃𝑖𝑡) + 𝑏2𝑖𝑛(𝑅𝐹𝑖𝑡) + 𝑏3𝑖𝑛(𝐴𝐶𝑖𝑡) +
𝑏4𝑖𝑛(𝐿𝐵𝑖𝑡) + 𝑏5𝑖𝑛(𝐹𝑇𝑖𝑡) + 𝑏6𝐼𝑛(𝐴𝑀𝑖𝑡) + 𝑏7𝑇𝐸 + 𝑣𝑖𝑡(4) 

𝑖 and 𝑡 in the model stand for Year 𝑡 in Area 𝑖; 𝑌𝐾𝑖𝑡is a 

measure of rice yield;  

According to the equation above, "𝑊𝑖𝑡is the reason 

for a water lack throughout the period of time t in the city i 

and is a clarifying variable; 𝑍𝑖𝑡refers to the economic and 

social characteristics of a village i throughout the period t; 

𝑌𝐾𝑖𝑡is the average per space crop yield k throughout the time 

t in an a village i, primarily such as grain and maize; i 

represents the village; k has the crop's type; and t is the 

period.Nit stands for the town is natural condition 

characteristics over the course of time t, primarily such as 

gradient and soil type; 𝑇𝑖𝑡denotes the imaginary time factor, 

represented by 1990 and 2000; 𝐷𝑖𝑡the dummy regional 

variable 𝛼，𝛽，𝛿, 𝜂, 𝛾 𝑎𝑛𝑑 𝜑 and are the estimable 

parameters; and,kit stands for the random disturbance term. 

The economic and social traits of villages i during the time 

period t are represented by 𝑧𝑖𝑡in the model. 

 

 

2.1 Analysis of model outcomes 

The National Climate Center provided the 

statistical data for this study, Using the experimental 

explanation of how CC affects rice yield described above, 

and covered 160 sites. This study analyses numerical data 

from 1968 to 2000 while keeping in mind that the data are 

only current as of 2000. Regions of North India were 

subjected to multiple regression analysis using the Eviews 

Program. The typical regression consequences for each 

location's influence of CC on rice yield are shown in Table 

1.It is evident after Table 1 model's simulation results are 

generally positive, and that of 𝐴𝑑𝑗𝑅2 and 𝑅2 values are 

greater than 0.88, suggesting these models can explain more 

than 88% of the data. As a result, the climate variables, 

coupled with the controls of Rice land (RA), Labor Input, 

Fertilizer Introduction, Total Capacity of Agricultural 

Equipment, etc, account for 88% of the variation in rice 

production among regions. 

2.2 Implications for Agricultural Output Due to Water 

Scarcity 

The study shows a negative relationship between 

crop output and water scarcity. The source separates the 

model towns obsessed with a shortage of water resources. 

The crop yields of two different cities can be compared. The 

results in the villages with abundant water resources are 

higher than in towns with insufficient water resources. 

Towns with inadequate water supplies typically yield 5355 

kg/hm2, 9% less than communities with adequate water 

supplies (Table 1). Corresponding to this, there is a 22% 

change in wheat berry productionconcerning the two groups. 

2.3 Setting an econometric model 

A variety of factors can impact crop yields per unit 

area. The econometric model examines the connection 

between water resources and agricultural economic growth 

to manage the effects of these factors and thoroughly read 

the consequence of water shortages thereon. The following 

econometric model has been created using this method, 

which was first used in Holtz-research by Eakin. 

𝑌𝑘𝑖𝑡 = 𝛼 + 𝛽𝑊𝑖𝑡 + 𝛿𝑍𝑖𝑡 + 𝜂𝑁𝑖𝑡 + 𝛾𝑇𝑖𝑡 + 𝜑𝐷𝑖𝑡 + 휀𝑘𝑖𝑡 (5) 

The per unit area crop yield (𝑌𝑘𝑖𝑡) of crop type 𝑘 

for the period 𝑡 at town 𝑖, primarily wheat and corn, is 

represented by the formula mentioned above, where 

𝑖 signifies a town, 𝑘 denotes a crop type, and t means a 

period. The 𝑇𝑖𝑡dummy time variable, 1990 and 2000, the 

dummy regional variable, and 𝛼，𝛽，𝛿，𝜂, 𝛾 𝑎𝑛𝑑 𝜑 the 

estimable parameters are represented by 𝑍𝑖𝑡, 𝑊𝑖𝑡, and 𝑡, 

respectively. 𝑍𝑖𝑡 indicated the economic characteristics and 

social of hamlet I for period t, 𝑊𝑖𝑡, the town's water shortage 

status during period 𝑡, and 𝐷𝑖𝑡 , the dummy regional variable.  
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Table 1. Results from the model show how location's rice output is impacted by climate change 

Independent 

variables 

North India Northeast India 

 Coefficient  T value Coefficient  T value 

LOG(TP) −0.46***  −3.77 0.43***  6.23 

LOG(RF) −0.004  −0.13 0.02  0.95 

LOG(AC) 0.91***  37.01 0.99***  20.16 

LOG(LB) 0.09***  4.79 0.07***  2.79 

LOG(FT) 0.07***  4.12 0.09***  3.45 

LOG(AM) 0.09***  5.21 0.04***  2.79 

TE 0.08***  14.26 0.80***  42.57 

R2  0.994   0.985  

AdjR2  0.993   0.949  

F Test value  9337.6***   15,600.3  

  

 

Table 2.Estimates of the results for how water supplies affect agriculture output per unit area 

Influencing factors Rice Wheat Corn Cotton 

Water resource 

conditions 

 

-0.0012 -0.0005 0.015 -0.005 

0=No; 1=Yes   -1.35 -0.65 

Per capita 

population  

 

−0.00004  0.0006 0.002 -0.000 05 

(Person/household  -0.98  -0.14 

Per capita farmland  −0.021  0.0003 

 

−0.014 0.004 

(hm/person)  -0.07  2.04** 

Non-agricultural 

labor force  

0.071 0.02 −0.111 0.013 

Proportion (0–1)  -0.18  -0.45 

Horizontal 

proportion (0–1) 

 -1.37  -0.01 

Primary school or 

above 

0.045 -0.025 -0.033 0.000 1 

     

Distance from the 

village committee to 

the county 

government 

0.0004 0.002 -0.005 0.000 05 

 2.55 4.75  -0.45 

2004 -0.03 -0.065 0.34 -0.0032 

(Time dummy 

variable) 

 7.55  -1.33 

Loam proportion -0.765 -0.032 -0.008 0.005 

    -1.04 

Constant 0.635 0.048 0.084 -0.021 

Regional dummy 

variable 

Ignored Ignored Ignored Ignored 

Number of observed 

values 

1082 1067 1075 1072 

𝑅2 0.85 0.73 0.66 0.74 
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Table 3. Agricultural yields as a result of the estimated effects of water resources 

Influencing factors Wheat Corn 

Per capita arable land under water shortage/(kg·hm−2) -275.8 -262.3 

(hm2·人−1) -0.41 5.72 

The average population/(people ∙ households−1) -3.4 2.5 

Per capita arable land/(hm2 people−1)   

Proportion of non-agricultural labor force -10.013.8 -4051.2 

Distance from the village committee to the county government (km) -2.1 2.3 

Proportion of primary school level or above the cultural level -354.2 481.7 

Loam proportion (0–1) -55.2 -877.6 

Gradient/degree -225.3 -1132.2 

2005 (Time dummy variable) 1175.6 12.875 

Constant 4755.2 5176.3 

Regional dummy variable Ignored  Ignored  

Number of Observed Values 681 912 

R2 0.15 0.26 

Number of villages 342 456 

 

𝑁𝑖𝑡stands for the town's natural characteristics 

during the period 𝑡, particularly the soil type, 휀𝑘𝑖𝑡 represents 

the random disturbance term. 

𝑍𝑖𝑡Represents the economic and social 

characteristics of a village i across the specified time period 

t in the model. The primary indicators used by the author to 

describe The number of people in a farmer's household, the 

amount of arable land or farmland per person, the 

percentage of the labor force working in other than 

agriculture employment opportunities, educational 

attainment, and the stage of market development are all 

indicators of the economic and social circumstances of 

peasants. 

2.4 Water resource limitations' effects on the structure of 

agricultural plantings 

Water resource limitations also impact the planting 

structure of the crops. Farmers will explicitly increase the 

area set aside for rice if the WS is sufficient, and no scarcity 

of space will be used to plant due to their focus on growing 

more water-intensive crops than on rice. Without a water 

shortage, RA financial records for 24% of the total planting 

area for all crops. However, RA only makes up 8% of the 

total crop acreage in water-scarce towns, which is 5% less 

than in cities without water constraints (Table 2). 

If WS is insufficient, in addition to rice, the 

percentage of cotton acres will also somewhat fall. Because 

corn requires less irrigation water to grow, it is produced at 

a higher rate, as evidenced by the fact that the proportion of 

corn acres in water-scarce towns is significantly higher (3% 

higher) than that of rice and cotton. According to descriptive 

statistical research, 36% of acres are constantly planted in 

wheat, regardless of a water shortage, indicating that 

growing grain may be fine. 

 

 

2.5 Setting model 

According to relevant economic theory, the 

following kind of econometric model is created for the 

situation of water scarcity influencing agriculture plant 

organization:  

𝐶𝑘𝑖𝑡 = 𝛼 + 𝛽𝑊𝑖𝑡 + 𝛿𝑍𝑖𝑡 + 𝜂𝑁𝑖𝑡 + 𝛾𝑇𝑖𝑡 + 𝜑𝐷𝑖𝑡 + 휀𝑘𝑖𝑡 (2)              

(6) 

The 𝑙𝑒𝑡𝑡𝑒𝑟𝑠 𝑖 𝑘, 𝑎𝑛𝑑 𝑡 in the formula above 

represent different types of towns, crops, and periods, 

respectively. The primary crops characterized by 𝐶𝑘𝑖𝑡 , 

which stands for the crop planting structure, are wheat, corn, 

rice, and cotton.It details the proportion of cropland inside 

the hamlet planted during the period 𝑡. Most authors are 

interested in the extent of a water shortage 𝑊𝑖𝑡 in the hamlet 

i throughout each period 𝑡 as an explanatory variable. The 

random disturbance term is 휀𝑘𝑖𝑡, and the estimable 

parameters are 𝛼，𝛽，𝛿，𝜂, 𝛾, 𝑎𝑛𝑑 𝜑. The model and all of 

the controls are very similar. 

2.6 The dimension estimation's findings 

Table 3 displays the findings of the dimension 

estimation for the effect of water scarcity on crop structure. 

When R2 is higher than 0.65, the regression results 

demonstrate that the model more closely approximates the 

data. The estimation findings show that several controls are 

of statistical significance, and the signs of the coefficients 

are consistent with predictions. For instance, the loam ratio 

strongly and favorably influences the model for the 

proportion of wheat acreage, demonstrating that the more 

significant the bigger percentage of wheat land, the greater 

the loam proportion. The model's corn acreage proportion is 

severely impacted by the amount of arable land per person. 

showing that the greater the corn acreage percentage, the 

lower the per capita arable land. Each RA aggregates model 

shows a strong and positive correlation between educational 

attainment and paddy RA. The paddy RA proportion rises as 

the education level increases. The results of the statistical 
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description demonstrate a variety of impacts of a shortage of 

water on the proportion of land used for various crops. The 

percentage of rice land in the RA proportion is negatively 

impacted by the lack of water supplies. 

3. Results and Discussions 

 

3.1 Correlation analysis of grain output, water resources, 

and climate change 

 

Both human activity and climatic Change influence 

every grain production per unit area. According to the 

examination findings of the Palm Drought severity scale 

(PDSI) and the Percentage of hectare wheat Production 

(PHGO), PHGO and PDSI showed a significant linear 

correlation between 1960 and 2000.  To quantify and 

investigate every effect of climatic modified rice output area 

per unit and follow the characteristics of global warming 

shown in Figure 1. When PHGO and PDSI are regressed 

linearly, created based on this association (equation 7) as 

follows: 

𝑃𝐻𝐺𝑂 = −1095.4 𝑃𝐷𝑆𝐼 + 1669 (7) 

The dependent variable, PHGO, is represented by the 

independent variable, PDSI, a climatic component with a 

coefficient of 0.7611 in the linear regression equation. As a 

result, climate variables were responsible primarily for rice 

production between 1960 and 2000. In contrast, human 

factors like technical advancement, political systems, 

agricultural production inputs, etc., had a much less impact. 

That accords with the reality of technological advancement 

in terms of some pesticides and fertilizers widely, every 

irrigation about farms, and the significant rice crop 

variations rural contract responsibility system 

implementation, which led every continued rise into 

agricultural production and pays household members 

according to their performance. 

 The actual value of PHGO has consistently 

exceeded expectations since 1984, with the most significant 

mistake being a 1708 kg/hm2 maximum in 1993. Every 

thorough analysis demonstrates that a fraction of the effect 

of climate change on rice output steadily reduced between 

1984 and 2000, indicating the ability to increase rice 

production in response to climate change steadily. Such was 

primarily because of technological and other human 

advancements, significant growth in agricultural output 

input, and policy systems.  The maximum increase under the 

effect of the aforementioned human variables, rice yield per 

unit area, occurred in 1993 at 1706𝑘𝑔/ℎ𝑚2, and the average 

addition of 1170 𝑘𝑔/ℎ𝑚2 between 1984 and 2000. In the 

same year, the average increase was a 42.94% yield of 

paddy rice per area, and the highest percentage was 70.49%, 

showing that the yield advantage was significant. Climate 

change has caused a more than 1000 kg/hm2 drop in the 

grain produced per unit area, as shown in this data. Every 

result demonstrated that human variables like innovation in 

the technology employed, assurance of the rule procedures, 

and increased input into agricultural production might 

mitigate the detrimental effects of global warming on rice 

output. 

3.2 Evaluation of the connection between water 

availability and grain yield 

As part of a study to determine how the Palmer 

Distress severity rating and the yield of grains per unit area 

relate to one another (F.P. (PDSI), it was found such from 

1960 to 2000, GIQ and PDSI had a strong linear 

relationship, as shown in Figure 2. This finding examines 

how water resource limitations affect planting structure and 

agricultural production per unit area and considers every 

characteristic of global warming. An equation for linear 

regression linking GIQ and PDSI is generated in light of this 

association (equation 8) as follows: 

𝐹𝑃 = 𝑃𝐷𝑆𝐼 − 943.6 + 7405     (8) 

Grain production per area is every dependent variable, 

while PDSI, a meteorological factor, is the independent 

variable (F.P.). The coefficient of the equation for linear 

regression is 0.7064. Consequently, likely, the impact of 

climatic factors on agricultural water use from 1960 to 2000 

stood dominant. At this time, human causes had minimal 

impact. This was commensurate with the natural growth in 

agricultural irrigation. In addition, each predicted F.P. from 

1960 to 2000 was calculated using the linear regression 

equation. 

The data demonstrate that after 1990, F.P.'s exact value 

was much lower than its expected appraisal, indicating such 

predicted grain yield by a climatic unit of area parameters 

continued much higher than the actual worth. The greatest 

failure was recorded and attained 2444 m3/hm2 in 2000. 

From the thorough analysis, it can be seen one percentage 

influence of climatic grain yield per unit area has changed 

progressively decreased between 1990 and 2000. This 

shows that agriculture's capacity to adjust to global warming 

dramatically improved, primarily because of human factors 

like water conservation technologies advancement, policy 

instrument assurance, and a rise in irrigation water 

conservation initiatives that is considerable. The highest 

value in 2000 was 43.13%, indicating a significant 

advantage. Every yearly average value of human forces has 

conserved agricultural water of about 139.4 billion m3, and 

27.22% of that water is saved on average. Additionally, 

every average rise in grain yield per square inch brought on 

more than 100 billion m3 by climate change. The outcomes 

also demonstrated that human variables, the water-

conserving farming equipment, a governmental instrument 

that ensures, and an increase in the funding of water 

conservation initiatives could offset climate change's 

detrimental consequences on agricultural water supply. 
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Figure 1. The relationship between Palmer DroughtSeverity Index and grain yield per unit area 

 

 

Figure 2. Examining the relationship between Palmer Drought Severity Index and grain yield per unit area 
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4. Conclusions 

The utilization of India's production of grains and 

agricultural water is now significantly impacted by the 

effects of climate change. Palmer Drought Severity Index 

(PDSI) was used to paper India's climate change features 

from 1960 to 2000. This tool revealed that the tendency of 

drought in India generally tempered preceding the 1990s 

and became increasingly assistant. Climate change has 

caused an average increase in irrigation water consumption, 

although grain yield per unit area in India has declined by 

more than 1000 kg/hm2 and has exceeded 100 billion m3. 

The production of rice is significantly impacted by climate 

change. Outside of Northeast India, rice suffered 

substantially due to the temperature increase output during 

those times, and significant regional variations in that 

impact existed. The natural environment varies depending 

on geography and conditions affecting agriculture 

manufacturing; it represents every variation in how well 

each region has adapted to climate change. The connection 

between agricultural economic expansion and water 

resources varies significantly across various geographical 

areas. Economic development in agriculture and water 

resources has a short-term two-cause link in every eastern 

region, but the two elements have a long-term one-way 

causal relationship. 
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