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Abstract 

The performance and functionality of semiconductor devices is directly affected by the transport properties of carriers. In this work, 

we develop a novel and effective approach for the simultaneous extraction of the diffusion length L and the normalized surface 

recombination velocity S, from the same Electron Beam Induced Current (EBIC) as a function of beam position in a normal-collector 

configuration. The approach is based on feedforward artificial neural network (ANN), where the ANN is trained to learn the 

relationship between the input of the system (diffusion length / surface recombination velocity) and the output of the system (EBIC). 

After training the ANN, it is possible to observe the reverse process and extract the diffusion length / the surface recombination 

velocity from any EBIC current using an exhaustive search method. An optimum set of values is obtained with an error less than 

1.7% for the diffusion length and less than 4% for the normalized surface recombination velocity in 95% of the cases, and an error 

less than 2.7% for the diffusion length and less than 8% for the normalized surface recombination velocity in 100% of the cases. 
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1. Introduction 

The Scanning electron microscopy SEM is an 

important tool for the study and analysis of different 

specimens; it permits the observation and characterization on 

a nanometer to micrometer scale. It is one of the widely used 

techniques in research and industry [1-4]. In scanning 

electron microscopy, Electron Beam Induced Current (EBIC) 

is one the most used tools for the investigation of crystal 

defects in semiconductors [5-9], and for the extraction of 

defect free region semiconductor parameters such as: the 

diffusion length (L), and the normalized surface 

recombination velocity (S) [10-20]. The parameter extraction 

problem is a multi-minimum optimization problem. 

Optimization algorithms tend to adjust the inputs such that 

the cost function, also known as the objective function, is 

either minimized or maximized (depending on whether it is a 

minimization or a maximization problem). One of the largest 

problems in optimization is to determine whether the solution 

found is a global solution (corresponds to finding the global 

minimum/maximum) or a suboptimum solution (corresponds 

to finding a local minimum/maximum) [21-24]. 

  Artificial Neural Networks (ANN) are widely used 

in parameter extraction of semiconductor devices and 

integrated circuits [25-33]; this is due to their specific 

characteristics such as their ability to learn by examples 

through training, their ability to generalize and predict, and 

their inherent parallel computation capability. In this work, a 

novel approach is developed for the simultaneous extraction 

of related semiconductor parameters: diffusion length L and 

surface recombination velocity S, from any EBIC signal of a 

defect free semi-infinite semiconductor. The approach is 

based on feedforward artificial neural networks; basically, an 

ANN is trained to learn the inherent relationship between the 

input parameters (L, S) and the output parameter (EBIC signal 

versus electron beam position). Once the ANN has been 

trained, it is possible to observe the reverse process and 

extract the two parameters using an exhaustive search 

method. 

Compared to other methods in the literature this 

approach has specific characteristics such as: (1) it is 

independent of the theoretical model (uses directly the data: 

experimental/simulation/theoretical, for training. (2) It is 

capable to generalize and extract any parameters from data 

not seen before.  (3) finding the optimum values for the 

parameters (α, L, S, Zt, Q) is guaranteed since the whole 

search space is scanned.  
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2. Electron Beam Induced Current  

When a semiconductor sample is bombarded with an 

electron beam in a scanning electron microscope (SEM), 

electron-hole pairs are generated in the semiconductor bulk. 

When the semiconductor sample contains internal electric 

field (p-n junction or Schottky junction), the charge carriers 

are separated by that field and minority carriers can therefore 

reach the junction by diffusion; this results in a charge-

collection current or electron beam induced current EBIC, 

which can be amplified and measured externally. Different 

geometries for observing EBIC are used [34]; the most 

commonly used one is the normal collector illustrated 

schematically in figure 1, which uses a p-n junction 

perpendicular to the electron beam incident surface. 

In figure 1, Xb represents the distance between the junction 

and the electron beam position. 

When the presence of the back surface of the diode 

can be neglected (sample thickness considered infinite), the 

transport of the minority carriers generated by the electron 

beam in the neutral material (n type) is described by the 

following steady state diffusion equation [35]: 

𝐷𝑝∇
2𝑝(𝑟) −

𝑝(𝑟)

𝜏
+ g (𝑟) … … … (1) 

Where p(r) is the excess hole density at the point r, Dp and τ 

are their diffusion coefficient and lifetime, respectively, g(r) 

is the generation rate of the electron hole pairs per unit 

volume. 

The boundary conditions are [35]: 

0 at   0p x= =  … … … (2a) 
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 … … … (2b) 

Where S=Vs L/D is the normalized surface recombination 

velocity, where Vs is the surface recombination velocity and 

Vd is the diffusion velocity ( /dV L = ). 

The EBIC current is calculated in the three regions: 

n region, the depletion layer region, and the p region, as 

follows [36,37]: 
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Where xp and xn are the edges of the depletion layer, gxz(x,z) is 

the projected generation onto the xz plane (since the 

contribution to the collected current does not depend on the y 

coordinate), and is given by [35]: 

( , ) ( , , )xzg x z g x y z dy



−

=   … … … (4) 

And: 
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is the induced current due to a point source located in (x, z) 

[35] and k is a constant, λ=1/L, μ= (λ2+k2)1/2. 

The EBIC current versus the beam position for 

different values of the diffusion length L and different values 

of the surface recombination velocity S is presented in 

figure2. The sample material is silicon and the energy beam 

is equal to 3KeV. 

3. Parameter extraction algorithm 

 

3.1. Parameter extraction as an optimization problem 

The parameter extraction problem can be formulated 

as an optimization problem where the objective function 

given by E(x) = E(y′-f(x)) is minimized. Here, y = f(x) is a 

process with output y and input x, where x is subject to the 

constraint C. The output y′ is a sample output measurement 

and the operator E is a general error operator (in our case we 

use the Euclidean distance), By solving this optimization 

problem, our goal is to find the input x* such that: 

          
subject to 

arg min ( ( ))E =
x

C

x x  … … … (6) 

In the ensuing, we detail the different steps involved 

in the parameter extraction process. The process consists of 

six steps as shown in table 1.  

In the following, we provide more details about the 

above-mentioned steps. 

 

3.2. Data sets Preparation: 

• In this step, the parameters L and S are sampled and 

arranged into vectors, that is:

1 2[ , ,... ]train train train train

mL L L=L , and
 

1 2[ , ,... ]train train train train

nS S S=S , with dimensions {1-by-

m}, and {1-by-n}, respectively. Then, the input 

training matrix train
X  of dimension {2-by-m×n} is 

formed by taking all possible combinations of 

vectors , train train
L S  . Finally, the output training 

matrix train
Y  is obtained for each column of train

X  

by using Donolato's model to calculate the EBIC 

signal for different values of the beam position.  

• For the test data set, the parameters L and S are also 

sampled and arranged into vectors, but this is done 

by considering the mid-value between each two 

consecutive values of the training vectors as follows: 

1 2 1[ , ,... ]test test test test

mL L L −=L  and 

1 2 1[ , ,... ]test test test test

nS S S −=S . These vectors have 

dimensions of {1-by-(m-1)}, and {1-by-(n-1)}, 

respectively.  Again, input test matrix 
test

X  of 

dimension {2-by-(m-1) × (n-1)} is obtained by 
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taking all possible combinations of 
test

L and
test

S

. The output test matrix is for each column of the 

matrix
test

X  is calculated using Donolato's model. 

3.3. ANN training 

The aim of this step is train the ANN to learn the 

relationship between the input data train
X  and the output data 

train
Y , that is: 

 train f train⎯⎯→X Y  … … … (7) 

, The input data set train
X is fed to the ANN and used to 

calculate the actual output data set 
actual

Y . The latter is 

subtracted from the desired output data set train
Y yielding an 

error e. This error is then used for ANN weights updating. 

This procedure is repeated a number of times till the sum 

squared error (SSE) drops below a certain threshold.  This is 

illustrated in figure 3 

The SSE is given by the following equation [27]: 

2

1

( )

traink
train actual

j j

j

SSE Y Y
=

= −  … … … (8) 

where ktrain designates the number of samples of  train
Y . 

 

3.4. ANN Testing  

In this step, the ability of the ANN to generalize is tested 

through the application of a new set of input values
test

X  not 

seen before. The EBIC signal obtained from this step
test

Y  

is then compared to the desired EBIC signal 
test

Y . Sample-

by-sample percentage error between 
test

Y and 
test

Y  is 

then taken using the following formula [27]:  

, ,

,

,

100

test test

i j i j

i j test

i j

e
−

= 
Y Y

Y
 … … … (9) 

where i and j designates the ith row, jth column of the matrices 

test
Y and 

test
Y , respectively. 

 

3.5. EBIC signal Oversampling  

In this step, the ability of ANNs to generalize is used 

to oversample (generate more samples) () the EBIC signal. 

This is done with low cost compared to the case where this is 

done by experimentation. Here as well, the EBIC signal 

over
Y is calculated by ANN  and compared to the desired 

data output 
over

Y and sample-by-sample percentage error 

between 
over

Y  and 
over

Y is obtained using equation (9). 

The input data matrix 
over

X in this case is obtained by 

oversampling the vectors of the training data vectors 

, train train
L S  and taking all possible combinations.  

 

 

3.5. Parameter Extraction  

In this step, the parameter extraction is performed 

using exhaustive search. This is done as follows: a database 

is created from the oversampled input data matrix 
over

X  and 

the oversampled output data matrix 
over

Y and is used for the 

exhaustive search. After that, we consider a random EBIC 

curve 
rand

y  that can be obtained, for example from an 

experiment, is used to calculate the Euclidian distance 

between the latter and all other columns of matrix
over

Y . The 

values of the parameters L and Scorresponding to the column 

of matrix 
over

Y with the smallest Euclidian distance are 

considered as the extracted parameters, that is:  

2
1,2...

arg min
over

rand over

j
j K=

= −y Y  … … … (10) 

where Kover is the number of columns of 
over

Y . 

 

4. Simulation results 

In this section we evaluate the performance of the 

proposed parameter extraction algorithm. We first start with 

the collection of the input/output data that will be used to train 

the ANN. In our work we consider Donolato's model to 

generate the input/output data [35] using the normal-collector 

configuration described previously (§ 2-2). Nevertheless, 

other approaches such as conducting Monte Carlo 

simulations or performing experimentations, can be used as 

well to form the input/output data for ANN training. The 

material sample considered in this work is Silicon and the 

electron beam is perpendicular to the surface of the 

semiconductor sample. The line scans the region outside the 

junction, and the energy beam is taken as 14 KeV which 

results in an energy range of 1.7 μm. 

 

4.1. Training algorithm 

As mentioned before, during the training of the 

ANN, the EBIC signal is calculated for all combinations of 

parameters and train train
L S . The values of , train train

L S  are 

obtained from [36,37]. Table 2 depicts the values of these 

parameters. 

As shown in table 2, considering all possible 

combinations of , train train
L S yields a total number of 2077 

samples, all of which are used for training the ANN. 

In this work, we consider a feed forward neural 

network that consists of one hidden layer, that comprises 5 

neurons and uses logarithmic sigmoid transfer functions. The 

output layer consists of 5 neurons (corresponding to the 

number of parameters) and uses linear transfer functions. 

Table 3 depicts the ANN parameters used in this work. 

As shown in Figure 4, the desired goal was attained 

after 40 epochs of training. 

As depicted in Figure 5, the maximal percentage 

error between the theoretical training EBIC and the EBIC 
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calculated by the ANN for five values of the beam position is 

0.9037%. This proves the successfulness of the training phase 

of the ANN. 

We consider also, the histogram plot in figure 6. 

It is easy to see that most of the errors are clustered around 

zero, which indicates that the ANN is learning the 

input/output relationship effectively.  The results are 

collected in table 4.  which shows that the maximal error in 

95% of the training samples is 0.4% only and the maximal 

error in 100% of the training samples is 1.2% only. 

 

4.2. Testing data  

Next, we test the trained ANN using values of EBIC 

signal not seen before as shown in table 5. 

The number of testing samples used is 2010 

samples. Figure 7 depicts the percentage error obtained by 

taking the difference between the samples of the test EBIC 

and the EBIC calculated by ANN. The maximum percentage 

error obtained is 1.5571%. 

Also, the histogram plot of the error is depicted in 

figure 8. The results from figure 8, are summarized in table 6. 

 

4.3. Oversampling of EBIC signal 

As mentioned before, the oversampling of the input 

parameters is done by taking more samples between 

consecutive training samples, which are then used to generate 

the oversampled EBIC signal using the trained and tested 

ANN.The values of the different parameters used in this part 

are shown in table 7. Here, the number of input data samples 

used to oversample the EBIC signal is 10769.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Figure 9, the maximal percentage error 

is 0.9654%. To have a better idea about the performance of 

the ANN, the histogram of the error is also plotted in figure 

10. The results of figure 10 are summarized in table 8. It is 

easy to see that the maximal error in 95% of the samples is 

0.45% and the maximal error in 100% of the samples is 

1.26%. 

4.4. Exhaustive search 

After oversampling the EBIC signal using the 

trained and tested ANN, an exhaustive search process is 

conducted to determine the value of the input parameters 

corresponding to the oversampled EBIC signal that is closest 

(in terms of Euclidian distance) to the EBIC signal under test. 

for which the input parameters are sought.   

To quantify the the performance of the parameter 

extraction algorithm, we consider a large set of randomly 

selected EBIC curves with known input parameters (L, S),. 

The percentage error between the true input parameter 

(nominal value) and the parameter determined using the 

proposed parameter extraction algorithm is given by: 

, ,

,

,

100

rand over

i j i j

i j rand

i j

e
−

= 
X X

X
 … … … (11) 

and is calculated for each randomly selected EBIC curve.  

In this part, 10680 randomly selected EBIC curves 

are used for testing the exhaustive search process. Figure 11 

depicts the histogram and the CDF plots of the percentage 

error for each parameter. Results of figure 11, are 

summarized in table 9; the error is less than 8% in all cases 

and less than 4% in 95% of the cases. These results clearly 

illustrate the successfulness of the parameters extraction 

algorithm considered in this paper.   
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Fig. 1 Schematic illustration of normal collector set up 
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Fig. 2  EBIC profiles for the region around the edges of a depletion layer located at 0.3 μm: (a) different values of the diffusion 

length L (S=0), (b) different values of the surface recombination velocity (L=3μm) (Same values as in [36,37] where taken) 

 

Table 1 Parameter extraction algorithm 

 

Step Process 

1 Prepare training values of the two parameters L and S (training input of the system) 

2 Using donolato’s model, Calculate the EBIC signal, for different values of the energy beam (training 

output of the system). 

3 Prepare test values of the two parameters L and S by taking mid values between two successive 

training data values (test input of the system). 

4 Using donolato’s model, Calculate the EBIC signal, for different values of the energy beam (test 

output of the system). 

5 Train the ANN using input and output training data prepared in steps 1 and 2. 

6 Test the ANN performance using the input and output test data prepared in steps 3 and 4. 

7 Oversample the EBIC signal using the generalization property of ANNs 

8 Extract the set of input parameters corresponding to a certain EBIC signal using exhaustive search  
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Fig. 3 ANN learning procedure 

 

Table 2 Semiconductor parameters used for training 

 

Material Parameter 

 

Minimal 

value 

Maximal 

value 

Sampling 

step size 

Number 

of 

samples Beam position(µm) 

 

6 6.9 0.2 5 

Diffusion length Ltrain(µm) 3 3.9 0.03 31 

Normalized surface recombination velocity Strain (µm-

1) 

2 4 0.03 67 

Total number of samples used for training 31×67=2077 

 

 

 

Table 3 ANN parameters used for training 

 

ANN parameters 

Number of epochs 300 

Desired goal 10-6 

Number of hidden layers 1 

Number of neurons in the hidden layer  5 uses logarithmic sigmoid transfer 

functions 

Number of neurons in the output layer 5 (number of samples of 

the beam position) 

uses linear transfer functions 

 

 
 

Fig. 4 Training curve of the ANN 
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Fig. 5 Percentage error between theoretical training EBIC signal and the training EBIC signal calculated by ANN 

 

 
 

Fig. 6 Probability density function (PDF) (bars) and cumulative distribution function (CDF) (solid line) of the percentage error for 

the training set 
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Table 4 Error for 95% and 100% of the samples 

 

Beam position value(μm) For 95% of the samples, error is 

below 

For 100% of the samples, error is 

below 

6 0.3% 0.65% 

6.2 0.25% 0.55% 

6.4 0.3% 0.75% 

6.6 0.3% 0.8% 

6.8 0.4% 1.2% 

 

Table 5 Semiconductor parameters used for testing the ANN 

 

Material Parameter 

 

Minimal 

value 

Maximal value Sampling step 

size 

Number of samples 

Beam position(µm) 

 

6 6.9 0.2 5 

Diffusion length Ltest(µm) 3+(0.03/2) 3.9 0.03 30 

Normalized surface recombination 

velocity Stest 

2+(0.03/2) 4 0.03 67 

Total number of samples for the test 30×67=2010 

 

 

 
Fig. 7 Percentage error between the theoretical test EBIC and the test EBIC calculated by ANN 
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Fig. 8 PDF and CDF of the percentage error for the test set 

 

 

Table 6 Error for 95% and 100% of the samples 

 

Beam position 

value(µm) 

For 95% of the samples, error is below For 100% of the samples, error is below 

6 1.08% 1.4% 

6.2 1.04% 1.3% 

6.4 1.1% 1.5% 

6.6 1.1% 1.5% 

6.8 1.2% 1.5% 

 

Table 7 Semiconductor parameters used to obtain the oversampled EBIC 

 

Material Parameter 

 

Minimal 

value 

Maximal 

value 

Sampling 

step size 

Number of 

samples 

Beam position (µm) 

 

6 6.9 0.2 5 

Diffusion length Lover(µm) 3 3.9 0.03/4 121 

Normalized surface recombination velocity 

Sove r  

2 2.66 0.03/4 89 

Total number of samples  121×89=10769 
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Fig. 9 Percentage error between the theoretical oversampled EBIC and the oversampled EBIC calculated by ANN 

 

 
 

Fig. 10 PDF and CDF of the percentage error for the oversampled set 
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Table 8 Error for 95% and 100% of the oversampled samples 

 

beam position value (μm) For 95% of the samples, error is 

below 

For 100% of the samples, error is 

below 

6 0.35% 0.55% 

6.2 0.2% 0.55% 

6.4 0.35% 0.7% 

6.6 0.3% 0.7% 

6.8 0.45% 1.26% 

 

 
 

Fig. 11 PDF and CDF of percentage error of the parameters L,S 

 

 

Table 9 Error of the two parameters L, S for 95% and 100% of the cases 

 

Semiconductor parameter extracted For 95% of the cases, 

error is below 

For 100% of the cases, error is below 

L (μm) 1.5% 2.7% 

S 4% 8% 

 

 

5. Conclusions 

In this work, we developed a novel method for the 

simultaneous extraction of the diffusion length and the 

surface recombination velocity from any 

theoretically/experimentally obtained EBIC signal. This 

method is based on neural networks and exhaustive search 

technique. Simulation results show that a unique set of 

parameter values can be obtained with error less than 8% 

from the true value. This proves the efficiency of the 

proposed approach.        
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