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Abstract 

In this study, tin oxide nanoparticles (SnO2 NPs) were synthesized via a green protocol using bioactive compounds from 

Chromolaena odorata leaves which stand as a reducing and capping agent. The leaves underwent two types of grinding 

techniques to investigate which technique would provide bioactive compounds in effective concentration to assist the biosynthesis 

process; ball-mill and electronic blender. The prepared SnO2 NPs were characterized by fourier-transform infrared (FTIR), x-ray 

diffraction analysis (XRD), field emission scanning electron microscopy (FESEM), energy dispersive x-ray spectroscopy (EDX) 

and UV-visible diffuse reflectance spectroscopy (DRS). FTIR spectra evidenced the pertinent functional groups of SnO2 NPs. 

From XRD analysis, both samples developed in tetragonal structure whereby ball-mill and electronic blender techniques gave 

average crystallite size of 7.85 and 11.60 nm respectively. Uniform distribution of agglomerated spherical shape of SnO2 NPs was 

observed from the FESEM images and EDX analysis confirmed the presence of Sn and O elements. The reflectance percentage of 

SnO2 NPs was found to be 48% with energy band value of 3.13 eV produced from ball-mill technique, while 37% reflectance and 

3.39 eV from latter technique. Band gap values suggested this synthesized SnO2 NPs using both techniques are practical 

candidates for optical function. 
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1. Introduction 

The outstanding performance of n-type 

semiconductors tin (iv) oxide nanoparticles (SnO2 NPs), 

which possess an energy band gap of 3.6 eV is well known 

[1]. It has similar advantages to the other oxide 

semiconductors materials such as Al2O3, ZnO, CuO, TiO2 

that possess commercial simplicity in processing practice 

and are less toxic [2]. The functionalities of SnO2 NPs can 

be found in lithium-ion batteries [3], solar cells [4], gas 

sensing [5], catalyst [6], etc. The advanced surface area of 

the designed nanomaterials provides high efficiency in 

facilitating the applications at an ideal level [7]. 

The preparation of SnO2 NPs is known using 

various techniques such as hydrothermal [8], microwave 

heating [9], sol-gel [10], laser ablation [11], microemulsion 

[12], etc. However, these techniques use toxic chemicals, 

utilize high energy and temperature, and are very expensive, 

limiting the industrial applications of SnO2 NPs. At this 

point, scientists designed the green synthetic method, which 

offers advantages whereby they use friendly protocol and 

are economical. Notably, this protocol involves the 

exploitation of the plant extract and has been of significant 

interest, especially in the biosynthesis field [13-15]. 

The green synthesis using plant extract towards 

SnO2 NPs had been carried out using Plectranthus 

amboinicus [16], Persia Americana [17], Pruni spinosae 

flos [18], Aspalathus linearis [19], Cleistanthus collinus 

[20], Ficus carica [21], Daphne mucronata [22], Brassica 

oleracea L. var. botrytis [23], Calotropis gigantean [24] and 

Ziziphus jujube [25]. Reports stated these approaches 

possessed simplicity, where the source of plants was 

abundant. Other than that, it offered a mild reaction 

environment and water media instead of toxic solvents. 
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Chromolaena odorata (C. odorata) is a perennial shrub in 

Malaysia that is sometimes used for medicinal purposes. 

The secondary metabolites of bioactive compounds were 

found in the leaves segment of C. odorata, such as 

polyphenols, alkaloids, essential oils and flavonoids. These 

bioactive compounds can perform two tasks towards the 

SnO2 NPs biosynthesis mechanism: reducing and capping 

actions [26-27]. A specific flavonoid compound identified 

as quercetin-type (Figure 1) is the ideal applicant to 

accomplish the actions. This is attributed to the availability 

of the two neighboring hydroxyl groups that bonded to the 

aromatic group, which facilitate the reduction process 

followed by the capping activity of the subjected metallic 

Sn4+ of the precursor salt [28]. 

 Here in this report, we demonstrate the preparation 

of SnO2 NPs via a green approach using leaves of C. 

odorata. The leaves underwent two types of grinding 

techniques; ball mill and conventional blender, denoted as A 

and B throughout this report. The grinding technique 

approach reduced particle size and changed the original 

surface structure, thus expanding their solvent extraction 

qualities [29]. Leaves grinding was required to break down 

the cell wall and cut its size, which simplified the following 

extraction process by having increments in terms of the 

surface area; thus the leaves' cells would easily be 

penetrated with solvent [30]. It was demonstrated that small 

particle size increased the extraction yield [31] and gave a 

slight increment for total flavonoid extraction [32-33]. 

Having this in hand, applying ball-mill (A) and conventional 

blender (B) would indicate which technique is more 

effective towards the grinding process for C. odorata leaves. 

The release ability effectiveness of the bioactive compounds 

towards the preparation of SnO2 NPs can be determined. 

The properties of the produced SnO2 NPs are studied based 

on their morphology, structure and optical properties. This 

was conducted by using fourier-transform infrared (FTIR), 

x-ray diffraction (XRD), field emission scanning electron 

microscopy (FESEM), energy dispersive x-ray analysis 

(EDX) and UV-Vis diffuse reflectance spectrometer. 

 

2. Materials and methods 

2.1. Materials 

 The precursor salt, namely tin (IV) chloride 

pentahydrate (SnCl4. 5H2O) was obtained from Sigma-

Aldrich, C. odorata leaves were collected from Kuala 

Selangor area, Malaysia and throughout the experimental 

activity, milli-Q water was utilized. 

2.2. Methodology 

 The leaves of C. odorata were dried and 20 g was 

taken to grind using a ball-mill machine and later the fine 

powder was boiled into 100 ml of water. The heating 

process was appropriately conducted at 60-70oC for 30 

minutes until the color of the solution turned to be dark 

green. The extract solution was cooled, filtrated and stored 

at 4oC. The mixing of 220 mL of C. odorata aqueous 

solution into 80 mL of SnCl4.5H2O was performed for 3 

hours at ambient temperature. Later, the centrifugation 

process took place for 15 minutes to separate the gelatinous 

pellet with the supernatant liquid, in which the gelatinous 

product was subjected to water removal process for 2 hours 

at 80°C. The dark solid was mashed and later calcined at 

700°C for 3 hours [34-35]. Similar approach was applied for 

preparation of SnO2 NPs using conventional blender. 

 

2.3. Phytochemical test of C. odorata leaves 

The identification of main bioactive compounds in 

C. odorata leaves was carried out by using chemical tests 

that were reported by former methods. 

 

2.3.1. Test for phenols  

A dropwise of 5% FeCl3 (ferric (III) chloride) was 

added up to 2 ml of C. odorata extract to provide a black 

solution as the mark of phenols [36]. 

 

2.3.2. Test for flavonoid 

The addition of 10 % aqueous sodium hydroxide (2 

ml) was carried out into 4 ml of the C. odorata extract, 

which later produced a yellow coloration. The mark of 

flavonoids presence was noted based on the transformation 

of yellowish to colorless solution on subsequent addition of 

dilute hydrochloric acid [37]. 

 

2.3.3. Test for terpenoids 

A similar volume ratio of C. odorata extract and 

chloroform was mixed well. Then it was cooled in a water 

container and added dropwise with 3 ml of concentrated 

H2SO4. The solution was left over for about 30 minutes. The 

presence of terpenoids was noted as there was a reddish-

brown coloration developed at the interface [38]. 

 

2.3.4. Test for alkaloids (Keller-Kiliani Test) 

A mixture containing a solution of 4.0 ml glacial 

acetic acid, a drop of 2.0 % FeCl3, 10 ml of C. odorata 

extract and 1 ml of concentrated H2SO4 was prepared by 

consecutive addition and shaken well. Later, a brown ring 

was developed in the middle of the layers that proved the 

alkaloids compound presented in the leaves extract [39]. 

 

3. Results and discussion 

3.1. Plausible mechanism of SnO2 NPs 

 Figure 2 shows the probable reaction mechanism 

that takes place to furnish SnO2 NPs. The association of the 

precursor salt solution (SnCl4. 5H2O) occurs with C. 

odorata leaves extract, specifically quercetin-type flavonoid. 

Later, cations of Sn4+ from precursor salt disseminate in the 

solution and build a complex by bridging with the active 

sites of the hydroxyl group of quercetin. In this case, two 

aromatic rings provide four hydroxyl groups that are 

compatible with tetravalent Sn4+ cation. This bridging 
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network is said to be responsible for keeping the 

polyphenolic molecules as one and inhibit accumulation. 

The calcination process is subjected to this product and 

SnO2 NPs produced as the outcome [40]. 

 

3.2. FTIR analysis 

Figure 3 represents the FTIR spectra of SnO2 NPs 

produced using extract solution prepared using ball-mill (A) 

and conventional blender (B) techniques. From the figure, 

all the absorption bands correspond to functional groups of 

SnO2, and no other foreign peaks are observed. The 

absorption band between 1952 and 2069 cm-1 represents the 

O-H group derived from water adsorption, while the band 

within 1558-1755 cm-1 indicates the vibration of Sn-OH 

bonding. Moreover, SnO2 vibration mode is displayed from 

the absorption band around 893-1104 cm-1, and the Sn-O 

group is evidenced by the appearance of a peak at 542-754 

cm-1 [41-42]. 

 

3.3. X-ray diffraction (XRD) 

Figure 4 shows the index of the XRD pattern for 

the prepared SnO2 NPs, whereby it is found to have good 

compatibility with earlier report [43-44]. The planes of 

(110), (101), (200), (211), (220), (002), (310), (112), (301), 

(202), (321) and (222) is associated to the appearance of the 

peaks at 2θ values of 26.9°, 34.1°, 38.2°, 51.5°, 54.4°, 57.6°, 

61.6°, 64.4o, 65.6°, 70.9°, 78.4o and 83.3o respectively 

according to JCPDS card no. 01-077-0452. Based on the 

spectroscopic data, no foreign phases have been discovered 

and the construction of SnO2 is recommended as a 

tetragonal structure [45]. Moreover, the sharpness pattern of 

the spectra indicates the crystallinity of the produced SnO2 

NPs. Furthermore, Full Width at Half Maximum (FWHM) 

is calculated based on the prominent plane (110) for 

crystallite size measurement using Scherrer’s equation (1): 

D = k/βcos … … … (1) 

where k is the unknown shape factor, λ is the X-ray 

wavelength of Cu Kα (1.54 Å), β is the full width at the half 

maximum in radians and θ is the Bragg’s angle. From the 

calculation, the average particle size for samples A and B is 

found to be 7.8 and 11.6 nm, respectively. It is observed that 

the synthesized SnO2 NPs utilize extract, being ground by 

conventional blender furnishes a narrower and pronounced 

peak that indicates intensified crystallinity associated with 

better construction of SnO2 NPs. 

3.4. FESEM and EDX analysis 

 The morphology feature of biosynthesized SnO2 

NPs is displayed in FESEM images (Figure 5), which reveal 

an agglomerated spherical-like shape with diameter in 

nanoscale, uniform distribution, and crystalline nature. The 

produced SnO2 NPs give measured diameters of 8.06 and 

9.19 nm for samples A and B, respectively. According to 

EDX spectra, the primary peaks are observed at 0.5 and 3.5 

eV corresponding to Sn and O elements, certifying 

constituents' existence [46]. Hence, it validates the 

construction of pure SnO2 and gives 35 % of O weight 

percentages and 65 % Sn. In addition, at 0.1, 0.2 and 0.3 eV, 

some small peaks are also being noted that belong to 

chlorine (Cl), nitrogen (N) and carbon (C). 

 

3.5. UV-visible diffuse reflectance analysis 

The analysis result of the diffuse reflectance 

spectroscopy delivers valuable knowledge about the optical 

properties of the product [47]. Figure 6 demonstrates the 

optical transitions process represented by the strong decline 

at absorption edge at 500 nm in visible regions, with sample 

A resulting reflectance at 48 % while 37 % for sample B. 

The higher reflectance value for sample A presumably 

originated from smaller particles and larger surface volume, 

evidenced by the XRD and FESEM results. This reflectance 

result shows that utilizing C. odorata extract prepared from 

ball mill grinding would furnish SnO2 NPs with better 

reflective capability than the latter technique. 

The conversion of the reflectance values to 

absorbance was carried out based on Kubelka-Munk (KM) 

function (2) [48-49]. According to (2), at any appropriate 

wavelength as given in formula: 

F(R)=(1-R)2/2R=k/s … … … (2) 

where F(R) is the Kubelka-Munk functions, and k, s are the 

K-M scattering and absorption coefficients. Figure 7 shows 

the linearity of the plotting and employment of the photon 

energy axis (x-axis) and by having this in hand, the 

acquisition of the band gap values can be accomplished. 

Samples A and B result in a band gap value of 3.13 and 3.39 

eV respectively. Sample A having band gap value that is 

close to 3.10 eV which belongs to the structural band gap of 

the improved SnO2 material [50]. However, both band gap 

values are still secured within the range of practice for 

application, especially for photocatalytic activity [51-53]. 
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Fig. 1. Quercetin-type flavonoid 

 

Fig. 2. Plausible mechanism for the construction of SnO2 NPs 

 

 

 

 

 

 

 

 

 

Fig. 3. FTIR spectra of SnO2 NPs prepared using ball-mill (A) and conventional blender (B) techniques 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Fig. 4. XRD spectra of SnO2 NPs using ball-mill (A) and conventional blender (B) techniques 
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Fig. 5. FESEM and EDX images of SnO2 NPs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. UV-Vis diffuse reflectance spectra of SnO2 NPs using ball-mill (A) and conventional blender (B) techniques 

 

 

 

 

 

 

 

 

Fig. 7. (F(R) hv)2 versus energy plots of SnO2 NPs using ball-mill (A) and conventional blender (B) techniques 
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4. Conclusions 

 As for the conclusion, this study demonstrated that 

by applying a green protocol of biosynthesis, SnO2 NPs had 

been effectively being produced using the exact solution of 

C. odorata leaves, in which the leaves underwent treatment 

of grinding; ball-mill and conventional blender. Both 

techniques proved to be effective in furnishing the bioactive 

compounds required for the biosynthesis process. From the 

result, FTIR obtained absorption bands correspond to the 

functional groups of SnO2 construction. XRD resulted in an 

average crystallite size of 7.8 and 11.6 nm for SnO2 NPs 

produced from the aforementioned technique shown and 

indicated as tetragonal structure. FESEM images showed 

SnO2 NPs morphology of agglomerated spherical-like, 

uniform distribution and crystalline nature, whereby EDX 

analysis confirmed the presence for both elements. Based on 

diffuse reflectance analysis, the incident light was reduced at 

48 % by using the first technique, resulting in a 3.13 eV 

band gap value, and 37 % reflectance for the latter technique 

with 3.39 eV. İt is found that the obtained band gap is not of 

much divergent value and still within the practical 

requirement for applications such as photocatalytic. 
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