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Abstract 

The photocatalytic degradation of (4-{[4-(dimethylamino) phenyl] [4-(trimethylazaniumyl) phenyl] methylidene} cyclohexa-2,5-

dien-1-ylidene) (dimethyl) ammonium bromide chloride called methyl green (MG) is taken as a model to study the reduction of 

wastewater treatment costs using thin film photocatalysis. The photocatalyst used is zinc oxide supported on glass, by a simple 

and economical method of pyrolysis spraying, enabling to decrease the cost of photocatalyst recovery after water treatment. The 

concentration of aqueous solution of VM was 10-4 M. Doping of zinc oxide with aluminum (5%) significantly improved the 

photocatalytic degradation of MG. Under visible irradiation, the apparent rate of degradation was 10-2 min-1 and 3.3 × 10-2 min-1 

for ZnO and ZnO:Al (5 %), respectively. When the free solar radiation is used, the result of the photocatalysis is very satisfactory 

with an apparent constant of 2.7 × 10-2 min-1 for the doped photocatalyst ZnO:Al (5 %). 
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1. Introduction 

 Global demand for organic dyes and pigments 

continues to grow as they are used in various fields such as 

textiles, printing, painting, and other industries; and this 

flourishing market will still develop in the future. However, 

more than 11 % of the world's annual dye production 

(approximately 0.7 million tons) is rejected annually by the 

various industries in the form of industrial effluents [1], and 

the contamination of natural waters by dyes has become one 

of the main forms of pollution, and hence, all the countries 

of the world are concerned with the development of new 

treatment methods [2, 3]. The discharge of these 

wastewaters loaded with dyes will lead to serious 

environmental problems and impacts on human health, 

because of their toxicity, and causes considerable damage to 

the aquatic environment because they are mortal for marine 

organisms (fish, algae, bacteria, etc.) moreover, they are 

mutagenic, carcinogenic, genotoxic to humans. Some dyes 

may cause allergic and dermatological reactions, with a 

possibility of bioaccumulation in living organisms and 

therefore their persistence in the food chain. Heterogeneous 

photocatalysis are among the most effective techniques for 

the treatment of dyes in polluted waters. This technique is 

based on the excitation of a semiconductor by light energy 

for the degradation of pollutants organic molecules into 

water (H2O) and carbon dioxide (CO2) molecules and other 

mineral compounds [4-13]. The mechanism of 

photocatalysis is largely explained in bibliography [14-18]. 

As a photocatalyst, we chose to use zinc oxide (ZnO) due to 

its photocatalytic activity better than that of the famous TiO2 

[19-21]. We carried out three (03) improvement operations 

namely: the semiconductor, the material used and the light 

source in order to finally suggest an efficient and 

economical photodegradation technique. 

 The first operation: The deposition of zinc oxide 

(ZnO) on glass supports, by a simple and economical 

method of pyrolysis spray. It allows the elimination of the 

cost recovery of the photocatalyst suspensions after 

photocatalytic treatments.  

 The second operation: The widening of the 

absorption domain of Zinc Oxide (ZnO) towards larger 

wavelengths by doping with aluminum (Al). 
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 The third operation: The replacement of 

expensive artificial light energy by free and renewable solar 

energy. 

 
Figure 1: Molecular structure of Methyl Green (MG) 

 

2. Materials and methods 

 All the chemicals used in this work are of 

analytical quality and used without any prior purification; 

and all the solutions were prepared with bi-distilled water. 

 

2.1. Deposition of the photocatalyst (ZnO) on a support 

 The metals oxides were deposited on glass 

substrates by the Spray Pyrolysis technique described in the 

literature [22] by scattering the Zinc solution at a deposition 

temperature of 400 ˚C; the distance between the beak and 

the substrate was fixed to 3 cm, with a deposition time of 20 

min and a flow rate of 1 mL/min. The concentration of 

dihydrated zinc acetate solution (Zn(CH3COO)2.2H2O) was 

0.1 mol/L. The optical T (λ) transmission spectra of the 

supports were obtained using the JASCO V630 DUO/5G 

UV-VISNIR dual beam spectrophotometer. The 

photodegradation of MG by ZnO can be done using solar 

irradiation as reported by Mai et al [23]. In order to repeat 

the same test with our supported photocatalyst, the ZnO was 

doped with aluminum to widen its absorption range towards 

the visible radiation, since the ZnO photocatalyst requires 

excitation with a wavelength less than 400 nm. The amount 

of light collected in the UV region is only about 5 % of the 

solar spectrum [24, 25]. 

 

2.2. Doping photocatalyst ZnO with aluminum (5 %) 

 The doping of ZnO with aluminum (Al) 5 % is 

realized by the preparation of a solution of a zinc acetate and 

aluminum sulfate 0.095 M and 0.005 M respectively. This 

doping permits the shift of the UV-visible absorption 

spectrum of the ZnO towards longer wavelengths allowing 

the use of the direct solar irradiations. 

 

 

2.3. The reactor and the light sources 

 The photochemical reactor is a rectangular shaped 

glass of dimension: 55.5 cm long, 11 cm wide and 7 cm in 

height and consists of three parts: the first part is the starting 

tank of the solution, the 2nd compartment is a tray on which 

the support of photocatalyst is deposited with an inclusion 

angle of 2˚; and the third part is the return tank of treated 

solution. The reactor is equipped with a variable flow pump 

connected to the two tanks with piping. A light source is 

placed 7 cm above the reactor of irradiation. Two types of 

lamps were used as a light source: 

 The first: A fluorescent tube of type "Philips 

TLAD 15W/05" with an emission spectrum having a 

maximum at around 365 nm with a half-band width of 50 

nm (Figure2). 

 

 
Figure 2: Emission spectrum of the polychromatic lamp 

Philips TLAD 15W/05 

  

The second: A lamp of the type OSRAM ULTRA-

VITALUX 300W, which emits essentially in the visible 

(Figure3.).  These lamps are heated 25 to 30 minutes 

before the start of photocatalysis tests under illumination. 

 

 

 
Figure 3: Spectrum of the lamp ULTRA-VITALUX 300W 

OSRAM 
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2.4. MG photodegradation in aqueous solution 

 A volume of 150 ml of MG aqueous solution (10-4 

M) was irradiated in the reactor already mentioned. The 

kinetics of the photocatalytic degradation were followed by 

UV-visible spectroscopy at the maximum wavelength of the 

GM absorption (at λmax=632nm). The UV-visible absorption 

spectrum of the MG is illustrated in (Figure4.). 
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Figure 4: UV-visible spectrum of aqueous solution 

[MG]=10-4M 

 

2.5. Photocatalytic degradation study by solar irradiation 

After the satisfactory results of MG 

photodegradation, we process to MGphotocatalysis by ZnO: 

Al (5%) photocatalyst under free and renewable solar 

irradiation, using the same photochemical reactor. 

Photodegradation by sun irradiation was realized during the 

day 05/04/2018, between 10h and 14h, at Larbi ben M'Hidi 

University of Oum el Buaghi, GPS coordinates 

(35°52'48.99"N) and (7°5'27.62°E). 

 

3. Results and discussions 

3.1. Comparison of direct photodegradation of MG by 

lamps 

Comparison of MG photocatalytic degradation 

kinetics by the two lamps is displayed in Figure5. The best 

degradation rates are attributed to photocatalysis under 

irradiation between 350 and 450 nm with 15% and 5% for 

essentially visible radiation, for 90 minutes of irradiation. 

The rate of photocatalytic degradation during the emission 

between 350 and 450 nm is three (03) times better than 

irradiation in visible because the emission spectra of first 

lamp is more energetic than the second. 

 

3.2. MG photocatalytic degradation kinetics study in 

aqueous solution 

Adsorption is the preliminary step of photocatalysis 

[26]. To determine its adsorption value in the dark, we 

placed a solution of MG (10-4 M) in the photochemical 

reactor under the same conditions as photocatalytic 

degradation and in the dark. 
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Figure 5: Comparison of the kinetics of direct 

photodegradation of MG (10-4 M), irradiated by 

wavelengths between 350 and 450 nm and essentially in 

visible 

 

We found that the adsorption/desorption 

equilibrium is reached after 10 minutes with an adsorption 

rate of 15 %. The photocatalytic studies were carried out on 

MG aqueous solution (10-4 M) with three different sources 

of light: the two lamps already mentioned and the solar 

light, in the same photochemical reactor. The entire surface 

of the photochemical reactor plate is covered with 

photocatalyst thin layer. We used two photocatalysts, 

namely ZnO and ZnO/Al (5%). 

 

3.2.1. Irradiation between 350 and 450 nm 

MG photocatalytic degradation kinetics, with ZnO 

and ZnO/Al (5 %) thins layers were realized at 632nm 

(Figure6). Photocatalytic degradation kinetics is of first 

order [27, 29] and the best degradation rates are obtained by 

the ZnO/Al (5 %) thin layer, with 52 % degradation after 90 

minutes and 34 % for the ZnO thin layer for the same 

irradiation time. The apparent rate constants are derived 

from the plot of ln[(OD)0/(OD)] as a function of time 

(Figure7) and are equal to 15.2×10-2 min-1 and 29.9×10-2 

min-1 for thin layers of ZnO and ZnO/Al (5%), respectively. 

Aluminum doping (5%) improves MG photocatalytic 

degradation by double increasing the degradation apparent 

rate constant. This result can be explained by the shift of the 

UV-visible absorption spectrum of ZnO after doping to 

longer wavelengths [30-32].  

 

3.2.3. Irradiation essentially in the visible 

 MG solution irradiated essentially in the visible 

with ZnO and ZnO/Al (5%) thins layers shows different 

photocatalytic degradation kinetics (Figure 8). The 

degradation rates were respectively 40% and 58% after 90 

minutes of irradiation.  
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Figure 6: comparison of MG (10-4 M) photocatalysis 

kinetics, irradiated at wavelengths between 350 and 450 nm, 

with the presence of metals oxides thins layers 
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Figure 7: ln [(OD)0/(OD)] variation as a function of time, 

during MG ([10-4M) solution photocatalysis, irradiated at 

wavelengths between 350 and 450 nm, with presence of 

metals oxides thins layers 

 

3.2.4. Solar irradiation 

MG solution UV-visible spectrum evolution 

(Figure 10) during the photocatalytic degradation shows a 

decrease of absorbance of the main band and a change in the 

absorbance of the other bands, indicating MG 

photodegradation and photoproducts apparition. MG 

photodegradation kinetics by ZnO/Al (5%) thin films under 

solar irradiation illustrated in the figure 11 shows a 

degradation rate of 52% for an irradiation time of 90 

minutes. The apparent rate constants is 2.7×10-2 min-1, and 

it's derived from the plot of ln [(OD)0/(OD)] as a function of 

time (Figure12). This result is very promising to replace the 

lamps with solar light which is free and renewable. 

Apparent rate constants are 10-2min-1 and 3.3 × 10-2 min-1 for 

thin layers ZnO, and ZnO/Al (5%), respectively (Figure 9). 
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Figure 8: Comparison of MG (10-4 M) photocatalysis 

kinetics, irradiated at visible wavelengths, with ZnO and 

ZnO/Al (5%) thins layers 
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Figure 9: ln [(ODO)0/(OD)] variation as a function of time, 

during MG (10-4M) solution photocatalytic degradation, by 

metal oxides thins layers, irradiated essentially in the visible 

 

200 400 600 800

0,0

0,5

1,0

1,5

2,0

2,5
 00 min

 05 min

 10 min

 15 min

 30 min

 45 min

 60 min

 90 min

O
D

Wave length (min)

 

Figure 10: MG (10-4 M) solution UV-Visible spectrum 

evolution, through photocatalytic degradation with thin layer 

of ZnO:Al (5%) presence, under solar irradiation 
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Figure 11: MG (10-4 M) photocatalytic kinetics, under solar 

irradiation by ZnO/Al (5%) thin layer 

 

 

Figure 12: ln [(OD)0/(OD)] variation as a function of time, 

during MG([MG]=10-4 M) photocatalytic degradation, under 

solar irradiation by thin layer of ZnO:Al (5%) 

 

4. Conclusions 

This work dealt with the MG degradation by 

photocatalysts thin layers supported on glasses using the 

Spray Pyrolysis method which was averred as a suitable 

method for the replacement of the high cost recovery 

technique of the semiconductors in suspension after 

photocatalytic treatment. 

MG photocatalytic degradation was studied as well 

under different conditions of light sources using the 

photocatalyst (ZnO). Moreover, the doping of the ZnO by 

aluminum (Al:5%) has considerably improved MG 

photocatalysis. 

The best results were obtained by the lamp which 

emitting essentially in the visible which proves that the 

doping of the ZnO by aluminum (Al:5%) makes it possible 

to shift UV-visible absorption spectrum towards the longer 

wavelengths. 

MG photocatalytic degradation under solar 

irradiation has given promising results and has shown that 

we can replace artificial and expensive light sources by free 

and renewable solar energy. 
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